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This project attempts to organize some of the most valuable resources that help develop the intent, understanding and 
implementation of the 2017 Kansas Mathematics Standards. These documents provide a starting point for teachers and 
administrators to begin discussion and exploration into the standards. It is not the only resource to support 
implementation of the 2017 Kansas Mathematics Standards. 
 
This project is built on the previous work started in the summer of 2012 from Melisa Hancock (Manhattan, KS), Debbie 
Thompson (Wichita, KS) and Patricia Hart (Wichita, KS) who provided the initial development of the “flip books.” The 
“flip books” are based on a model that Kansas had for earlier standards; however, this edition specifically targets the 
Kansas Mathematics Standards that were adopted in the summer of 2017. These flip books incorporate the resources 
from other state departments of education, the mathematics learning progressions, and other reliable sources including 
The National Council of Teachers of Mathematics and the National Supervisors of Mathematics.  In addition, 
mathematics educators across the country have suggested changes/additions that could or should be made to further 
enhance its effectiveness.  The document is posted on the KSDE Mathematics website at 
http://community.ksde.org/Default.aspx?tabid=5646 and will continue to undergo changes periodically.  When 
significant changes/additions are implemented, the modifications will be posted and dated. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For questions or comments about the flipbooks, please contact Melissa Fast at the Kansas State Department of Education – mfast@ksde.org. 

About the Flip Books 

http://community.ksde.org/Default.aspx?tabid=5646
mailto:mfast@ksde.org
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The (mathematics standards) call for a greater focus. Rather than racing to cover topics in today’s mile-wide, inch-deep 
curriculum, we need to use the power of the eraser and significantly narrow and deepen how time and energy is spent in 
the mathematics classroom. There is a necessity to focus deeply on the major work of each grade to enable students to 
gain strong foundations:  solid conceptual understanding, a high degree of procedural skill and fluency, and the ability to 
apply the mathematics they know to solve problems both in and out of the mathematics classroom. 
(www.achievethecore.org)  
 
Not all standards should have the same instructional emphasis. Some groups of standards require a greater emphasis 
than others. In order to be intentional and systematic, priorities need to be set for planning, instruction, and 
assessment.  “Not everything in the Standards should have equal priority” (Zimba, 2011).  Therefore, there is a need to 
elevate the content of some standards over that of others throughout the K-12 curriculum. 
 
When the Standards were developed the following were considerations in the identification of priorities:  1) the need to 
be qualitative and well-articulated; 2) the understanding that some content will become more important than other; 3) 
the creation of a focus means that some essential content will get a greater share of the time and resources “while the 
remaining content is limited in scope.” 4) a “lower” priority does not imply exclusion of content, but is usually intended 
to be taught in conjunction with or in support of one of the major clusters.  
 
“The Standards are built on the progressions, so priorities have to be chosen with an eye to 
the arc of big ideas in the Standards.  A prioritization scheme that respects progressions in the 
Standards will strike a balance between the journey and the endpoint.  If the endpoint is 
everything, few will have enough wisdom to walk the path, if the endpoint is nothing, few will 
understand where the journey is headed.  Beginnings and the endings both need particular 
care.  … It would also be a mistake to identify such standard as a locus of emphasis. (Zimba, 
2011) 
 
The important question in planning instruction is: “What is the mathematics you want the student to walk away with?” 
In order to accomplish this, educators need to think about “grain size” when planning instruction. Grain size corresponds 
to the knowledge you want the student to know. Mathematics is simplest at the right grain size.  According to Phil Daro 
(Teaching Chapters, Not Lessons—Grain Size of Mathematics), strands are too vague and too large a grain size, while 
lessons are too small a grain size. Units or chapters produce about the right “grain size”.  In the planning process 
educators should attend to the clusters, and think of the standards as the ingredients of a cluster. Coherence of 
mathematical ideas and concepts exists at the cluster level across grades.   
 
A caution--Grain size is important but can result in conversations that do not advance the intent of this structure.  
Extended discussions among teachers where it is argued for “2 days” instead of “3 days” on a topic because it is a lower 
priority can detract from the overall intent of suggested priorities.  The reverse is also true. As Daro indicates, focusing on 
lessons can provide too narrow a view which compromises the coherence value of closely related standards. 

Planning Advice - Focus on the Clusters 

http://www.achievethecore.org/
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The video clip Teaching Chapters, Not Lessons—Grain Size of Mathematics presents Phil 
Daro further explaining grain size and the importance of it in the planning process. (Click 
on photo to view video.) 
 
Along with “grain size”, clusters have been given priorities which have important 
implications for instruction. These priorities should help guide the focus for teachers as 
they determine allocation of time for both planning and instruction. The priorities provided 

help guide the focus for teachers as they determine distribution of time for both planning and instruction, helping to 
assure that students really understand mathematics before moving on. Each cluster has been given a priority level. As 
professional educators begin planning, developing and writing units, these priorities provide guidance in assigning time 
for instruction and formative assessment within the classroom. 
 
Each cluster within the standards has been given a priority level influenced by the work of Jason Zimba. The three levels 
are referred to as — Major, Supporting and Additional.  Zimba suggests that about 70% of instruction should relate to 
the Major clusters. The lower two priorities (Supporting and Additional) can work together by supporting the Major 
priorities. You can find the grade Level Focus Documents for the 2017 Kansas Math Standards at: 
http://community.ksde.org/Default.aspx?tabid=6340.   

 

Appropriate Use: 
• Use the priorities as guidance to inform instructional decisions regarding time and resources spent on clusters 

by varying the degrees of emphasis. 
• Focus should be on the major work of the grade in order to open up the time and space to bring the Standards 

for Mathematical Practice to life in mathematics instruction through sense-making, reasoning, arguing and 
critiquing, modeling, etc. 

• Evaluate instructional materials by taking the cluster level priorities into account.  The major work of the grade 
must be presented with the highest possible quality; the additional work of the grade should support the major 
priorities and not detract from them. 

• Set priorities for other implementation efforts such as staff development, new curriculum development, and 
revision of existing formative or summative testing at the state, district or school level. 

 
Things to Avoid: 

• Neglecting any of the material in the standards. Seeing Supporting and Additional clusters as optional. 
• Sorting clusters (from Major to Supporting to Additional) and then teaching the clusters in order. This would 

remove the coherence of mathematical ideas and create missed opportunities to enhance the major work of the 
grade with the other clusters. 

• Using the cluster headings as a replacement for the actual standards. All features of the standards matter—from 
the practices to surrounding text, including the particular wording of the individual content standards. Guidance 
for priorities is given at the cluster level as a way of thinking about the content with the necessary specificity yet 
without going so far into detail as to comprise the coherence of the standards (grain size).  

Recommendations for Cluster Level Priorities 

http://community.ksde.org/Default.aspx?tabid=6340
https://vimeo.com/79909978
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(High Leverage Teacher Actions) 
 
[National Council of Teachers of Mathematics. (2014). Principles to Actions: Ensuring Mathematical Success for All. 
Reston, VA: National Council of Teachers of Mathematics.]  
 
The eight Mathematics Teaching Practices should be the foundation for mathematics instruction and learning. This 
framework was informed by over twenty years of research and presented in Principles to Actions by the National Council 
of Teachers of Mathematics (NCTM). If teachers are guided by this framework, they can move “toward improved 
instructional practice” and support “one another in becoming skilled at teaching in ways that matter for ensuring 
successful mathematics learning for all students” (NCTM, 2014, p. 12). 
 

1. Establish mathematics goals to focus learning.  
Effective teaching of mathematics establishes clear goals for the mathematics that students are learning, 
situates goals within learning progressions, and uses the goals to guide instructional decisions. 

2. Implement tasks that promote reasoning and problem solving. 
Effective teaching of mathematics engages students in solving and discussing tasks that promote mathematical 
reasoning and problem solving and allow multiple entry points and varied solution strategies. 

3. Use and connect mathematical representations. 
Effective teaching of mathematics engages students in making connections among mathematical 
representations to deepen understanding of mathematics concepts and procedures and as tools for problem 
solving. 

4. Facilitate meaningful mathematical discourse. 
Effective teaching of mathematics facilitates discourse among students to build shared understanding of 
mathematical ideas by analyzing and comparing student approaches and arguments. 

5. Pose purposeful questions. 
Effective teaching of mathematics uses purposeful questions to assess and advance students’ reasoning and 
sense making about important mathematical ideas and relationships. 

6. Build procedural fluency from conceptual understanding. 
Effective teaching of mathematics builds fluency with procedures on a foundation of conceptual understanding 
so that students, over time, become skillful in using procedures flexibly as they solve contextual and 
mathematical problems. 

7. Support productive struggle in learning mathematics. 
Effective teaching of mathematics consistently provides students, individually and collectively, with 
opportunities and supports to engage in productive struggle as they grapple with mathematical ideas and 
relationships. 

8. Elicit and use evidence of student thinking. 
Effective teaching of mathematics uses evidence of student thinking to assess progress toward mathematical 
understanding and to adjust instruction continually in ways that support and extend learning. 

 

 

  

Mathematics Teaching Practices 

http://www.nctm.org/principlestoactions
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The Common Core State Standards for Mathematical Practice are practices expected to be integrated into every mathematics lesson for all students Grades K-
12. Below are a few examples of how these Practices may be integrated into tasks that Grade 7 students complete. 

Practice Explanation and Example 
1) Make sense of 
problems and 
persevere in 
solving them. 

Mathematically proficient students in Grade 7 start by explaining to themselves the meaning of a problem and looking for entry points to its 
solution. They solve real world problems involving ratios and rates and discuss how they solved them.  They see the meaning of a problem and 
look for efficient ways to represent and solve it.  They check their thinking by asking themselves, “What is the most efficient way to solve the 
problem?”, “Does this make sense?”, and “Can I solve the problem in a different way?”  They understand the approaches of others to solving 
complex problems and identify correspondences between the different approaches.  Example:  Seventh graders should navigate among tables, 
graphs, and equations representing linear relationships to gain insights into the role played by constant rate of change. 

2) Reason 
abstractly and 
quantitatively. 

Mathematically proficient students in Grade 7 make sense of quantities and their relationships in problem situations.  They represent a wide 
variety of real world contexts through the use of real numbers and variables in mathematical expressions, equations, and inequalities.  They 
examine patterns in data and assess the degree of linearity of functions.  They contextualize to understand the meaning of the number or 
variable as related to the problem.  They decontextualize to manipulate symbolic representations by applying properties of operations.  
Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to 
the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects.  
Examples:  1)They apply ratio reasoning to convert measurement units and proportional relationships to solve percent problems, 2) they solve 
problems involving unit rates by representing the situations in equation form, and 3) they use properties of operation to generate equivalent 
expressions and use the number line to understand multiplication and division of rational numbers. 

3) Construct 
viable arguments 
and critique the 
reasoning of 
others. 

Mathematically proficient students in Grade 7 understand and use stated assumptions, definitions, and previously established results in 
constructing arguments.  They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are 
able to analyze situations by breaking them into cases, and can recognize and use counterexamples.  They justify their conclusions, communicate 
them to others, and respond to the arguments of others.   They construct arguments using verbal or written explanations accompanied by 
expressions, equations, inequalities, models, and graphs, tables, and other data displays (i.e. box plot, dot plots, histograms, etc.)  Example: Use 
of numerical counterexamples to identify common errors in algebraic manipulation, such as thinking that 5 – 2x is equivalent to 3x.  Proficient MS 
students progress from arguing exclusively through concrete referents such as physical objects and pictorial referents, to also including symbolic 
representations such as expressions and equations. 

4) Model with 
mathematics. 

Mathematically proficient students Grade 7 can apply the mathematics they know to solve problems arising in everyday life, society, and 
the workplace.  They analyze relationships mathematically to draw conclusions.  They routinely interpret their mathematical results in the 
context of the situation and reflect on whether the results make sense, possibly improving the mode if it has not served its purpose. 
Examples: Seventh grade students might apply proportional reasoning to plan a school event or analyze a problem in the community,   or 
they can roughly fit a line to a scatter plot to make predictions and gather experimental data to approximate a probability. 

Standards for Mathematical Practice in Grade 7 
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5) Use 
appropriate tools 
strategically. 

Mathematically proficient students in Grade 7 consider the available tools when solving a mathematical problem.  These tools might 
include pencil/paper, concrete models, ruler, protractor, calculator, spreadsheet, computer algebra system, a statistical package, or 
dynamic geometry software. They are sufficiently familiar with tools appropriate for their grade to make sound decisions about when each 
of these tools might be helpful, recognizing both the insight to be gained and their limitations.  They are able to use technological tools to 
explore and deepen their understanding of concepts. Examples:  Use graphs to model functions, algebra tiles to see how properties of 
operations apply to equations, and dynamic geometry software to discover properties of parallelograms. They might use a computer 
applet demonstrating Archimedes’ procedure for approximating the value of 𝜋𝜋.  

6) Attend to 
precision. 

Mathematically proficient students in Grade 7 try to communicate precisely to others.  They try to use clear definitions in discussions 
with others and in their own reasoning. They calculate accurately and efficiently, express numerical answers with a degree of precision 
appropriate for the problem context.  Examples:  1) Seventh grade students can use the definition of rational numbers to explain why a 
number is irrational, and describe congruence and similarity in terms of transformations in the plane and 2) they accurately apply 
scientific notation to large numbers and use measures of center to describe data sets. 

7) Look for and 
make use of 
structure. 

Mathematically proficient students in Grade 7 look for and notice patterns and then articulate what they see.  They can step back for an 
overview and shift perspective.  They can see complicated things, such as some algebraic expressions, as single objects or as being 
composed of several objects.  For example, they can see 5 − 3(𝑥𝑥 − 𝑦𝑦)2 as 5 minus a positive number times a square and use that to 
realize that its value cannot be more than 5 for any real numbers x and y.  Examples:  1) Seventh grade students might use the structure 
of the number line to demonstrate that the distance between two rational numbers is the absolute value of their difference, ascertain 
the relationship between slopes and solution sets of systems of linear equations, and see the equation 3𝑥𝑥 = 2𝑦𝑦 represents a 
proportional relationship with a unit rate of 3

2
= 1.5, 2) they might recognize how the Pythagorean theorem is used to find distances 

between points in the coordinate plane and identify right triangles that can be used to find the length of a diagonal in a rectangular 
prism. 

8) Look for and 
express 
regularity in 
repeated 
reasoning. 

Mathematically proficient students in Grade 7 notice if calculations are repeated and look both for general methods and for shortcuts.  
By paying attention to the calculation of slope as they repeatedly check whether points are on the line through (1,2) with slope 3, middle 
school students might abstract the equation (𝑦𝑦−2)

(𝑥𝑥−1) = 3.  As they work to solve a problem, mathematically proficient students maintain 
oversight of the process, while attending to the details.  They continually evaluate the reasonableness of their intermediate results.  
Examples: 1)By working with tables of equivalent ratios, seventh graders can deduce the corresponding multiplicative relationships and 
connections to unit rates, 2) they notice the regularity with which interior angle sums increase with the number of sides in a polygon 
leads to a general formula for the interior angle sum of an n-gon, 3) Seventh graders learn to see subtraction as addition of opposite, 
and use this in a general purpose tool for collecting like terms in linear expressions. 
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Implementing Standards for Mathematical Practice 
 

This guide was created to help educators implement these standards into their classroom instruction. These are the 
practices for the students, and the teacher can assist students in using them efficiently and effectively.  
 

#1 – Make sense of problems and persevere in solving them. 
 

Summary of this Practice: 
• Interpret and make meaning of the problem looking for starting points.  Analyze what is given to explain to 

themselves the meaning of the problem. 
• Plan a solution pathway instead of jumping to a solution.  
• Monitor their progress and change the approach if necessary.  
• See relationships between various representations.  
• Relate current situations to concepts or skills previously learned and connect mathematical ideas to one another. 
• Continually ask themselves, “Does this make sense?” 
• Understand various approaches to solutions. 

 

Student Actions Teacher Actions 
• Actively engage in solving problems and thinking is 

visible (doing mathematics vs. following steps or 
procedures with no understanding). 

• Relate current “situation” to concepts or skills 
previously learned, and checking answers using 
different methods. 

• Monitor and evaluate their own progress and change 
course when necessary. 

• Always ask, “Does this make sense?” as they are 
solving problems. 

• Allow students time to initiate a plan; using question 
prompts as needed to assist students in developing a 
pathway. 

• Constantly ask students if their plans and solutions 
make sense. 

• Question students to see connections to previous 
solution attempts and/or tasks to make sense of the 
current problem. 

• Consistently ask students to defend and justify their 
solution(s) by comparing solution paths. 

 

What questions develop this Practice? 
• How would you describe the problem in your own words? How would you describe what you are trying to find? 
• What do you notice about...? 
• What information is given in the problem? Describe the relationship between the quantities. 
• Describe what you have already tried. What might you change? Talk me through the steps you’ve used to this point. 
• What steps in the process are you most confident about? What are some other strategies you might try? 
• What are some other problems that are similar to this one? 
• How might you use one of your previous problems to help you begin? How else might you 

organize...represent...show...? 
 

What are the characteristics of a good math task for this Practice? 
• Requires students to engage with conceptual ideas that underlie the procedures to complete the task and develop 

understanding. 
• Requires cognitive effort - while procedures may be followed, the approach or pathway is not explicitly suggested by 

the task, or task instructions and multiple entry points are available. 
• Encourages multiple representations, such as visual diagrams, manipulatives, symbols, and problem situations.  

Making connections among multiple representations to develop meaning. 
• Requires students to access relevant knowledge and experiences and make appropriate use of them in working 

through the task.  
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#2 – Reason abstractly and quantitatively. 

 
Summary of this Practice: 
• Make sense of quantities and their relationships.  
• Decontextualize (represent a situation symbolically and manipulate the symbols) and contextualize (make meaning of 

the symbols in a problem) quantitative relationships.  
• Understand the meaning of quantities and are flexible in the use of operations and their properties.  
• Create a logical representation of the problem.  
• Attend to the meaning of quantities, not just how to compute them. 
 

Student Actions Teacher Actions 
• Use varied representations and approaches when 

solving problems. 
• Represent situations symbolically and manipulating 

those symbols easily.  
• Give meaning to quantities (not just computing them) 

and making sense of the relationships within 
problems. 

• Ask students to explain the meaning of the symbols 
in the problem and in their solution. 

• Expect students to give meaning to all quantities in 
the task. 

• Question students so that understanding of the 
relationships between the quantities and/or the 
symbols in the problem and the solution are fully 
understood. 

 
What questions develop this Practice? 
• What do the numbers used in the problem represent? What is the relationship of the quantities? 
• How is related to ? 
• What is the relationship between   and  ?  
• What does   mean to you? (e.g. symbol, quantity, diagram) 
• What properties might you use to find a solution? 
• How did you decide that you needed to use  ? Could we have used another operation or property to solve this 

task? Why or why not? 
 
What are the characteristics of a good math task for this Practice? 
• Includes questions that require students to attend to the meaning of quantities and their relationships, not just how 

to compute them. 
• Consistently expects students to convert situations into symbols in order to solve the problem; and then requires 

students to explain the solution within a meaningful situation. 
• Contains relevant, realistic content. 
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#3 – Construct viable arguments and critique the reasoning of others. 

Summary of this Practice: 
• Analyze problems and use stated mathematical assumptions, definitions, and established results in constructing 

arguments.  
• Justify conclusions with mathematical ideas.  
• Listen to the arguments of others and ask useful questions to determine if an argument makes sense.  
• Ask clarifying questions or suggest ideas to improve/revise the argument.  
• Compare two arguments and determine correct or flawed logic. 
 

Student Actions Teacher Actions 
• Make conjectures and exploring the truth of those 

conjectures. 
• Recognize and use counter examples. 
• Justify and defend all conclusions and using data 

within those conclusions. 
• Recognize and explain flaws in arguments, which may 

need to be demonstrated using objects, pictures, 
diagrams, or actions. 

• Encourage students to use proven mathematical 
understandings, (definitions, properties, conventions, 
theorems etc.), to support their reasoning. 

• Question students so they can tell the difference 
between assumptions and logical conjectures. 

• Ask questions that require students to justify their 
solution and their solution pathway. 

• Prompt students to respectfully evaluate peer 
arguments when solutions are shared. 

• Ask students to compare and contrast various 
solution methods 

• Create various instructional opportunities for 
students to engage in mathematical discussions 
(whole group, small group, partners, etc.) 

 
What questions develop this Practice? 
• What mathematical evidence would support your solution? How can we be sure that...? How could you prove 

that...?  
• Will it still work if...? 
• What were you considering when...? How did you decide to try that strategy? 
• How did you test whether your approach worked? 
• How did you decide what the problem was asking you to find? (What was unknown?) 
• Did you try a method that did not work? Why didn’t it work? Would it ever work? Why or why not? 
• What is the same and what is different about...? How could you demonstrate a counter-example? 

 
What are the characteristics of a good math task for this Practice? 
• Structured to bring out multiple representations, approaches, or error analysis. 
• Embeds discussion and communication of reasoning and justification with others. 
• Requires students to provide evidence to explain their thinking beyond merely using computational skills to find a 

solution. 
• Expects students to give feedback and ask questions of others’ solutions.  
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#4 – Model with mathematics. 
 

Summary of this Practice: 
• Understand reasoning quantitatively and abstractly (able to decontextualize and contextualize).  
• Apply the math they know to solve problems in everyday life.  
• Simplify a complex problem and identify important quantities to look at relationships.  
• Represent mathematics to describe a situation either with an equation or a diagram and interpret the results of a 

mathematical situation. 
• Reflect on whether the results make sense, possibly improving/revising the model.  
• Ask themselves, “How can I represent this mathematically?”  
 

Student Actions Teacher Actions 
• Apply mathematics to everyday life. 
• Write equations to describe situations. 
• Illustrate mathematical relationships using diagrams, 

data displays, and/or formulas. 
• Identify important quantities and analyzing 

relationships to draw conclusions. 

• Demonstrate and provide students experiences with 
the use of various mathematical models. 

• Question students to justify their choice of model and 
the thinking behind the model. 

• Ask students about the appropriateness of the model 
chosen. 

• Assist students in seeing and making connections 
among models. 

 
What questions develop this Practice? 
• What number model could you construct to represent the problem? 
• How can you represent the quantities? 
• What is an equation or expression that matches the diagram..., number line…, chart..., table…? 
• Where did you see one of the quantities in the task in your equation or expression? 
• What math do you know that you could use to represent this situation? 
• What assumptions do you have to make to solve the problem? 
• What formula might apply in this situation? 

 
What are the characteristics of a good math task for this Practice? 
• Structures represent the problem situation and their solution symbolically, graphically, and/or pictorially (may 

include technological tools) appropriate to the context of the problem.  
• Invites students to create a context (real-world situation) that explains numerical/symbolic representations. 
• Asks students to take complex mathematics and make it simpler by creating a model that will represent the 

relationship between the quantities. 
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#5 – Use appropriate tools strategically. 
 

Summary of this Practice: 
• Use available tools recognizing the strengths and limitations of each.  
• Use estimation and other mathematical knowledge to detect possible errors.  
• Identify relevant external mathematical resources to pose and solve problems.  
• Use technological tools to deepen their understanding of mathematics.  
• Use mathematical models for visualize and analyze information 
 

Student Actions Teacher Actions 
• Choose tools that are appropriate for the task. 
• Know when to use estimates and exact answers. 
• Use tools to pose or solve problems to be most 

effective and efficient. 

• Demonstrate and provide students experiences with 
the use of various math tools. A variety of tools are 
within the environment and readily available. 

• Question students as to why they chose the tools 
they used to solve the problem. 

• Consistently model how and when to estimate 
effectively, and requiring students to use estimation 
strategies in a variety of situations. 

• Ask student to explain their mathematical thinking 
with the chosen tool. 

• Ask students to explore other options when some 
tools are not available. 

 
What questions develop this practice? 
• What mathematical tools could we use to visualize and represent the situation? 
• What information do you have? 
• What do you know that is not stated in the problem? What approach are you considering trying first? 
• What estimate did you make for the solution? 
• In this situation would it be helpful to use...a graph..., number line..., ruler..., diagram..., calculator..., manipulative? 

Why was it helpful to use...? 
• What can using a show us that  _may not? 
• In what situations might it be more informative or helpful to use...? 

 
What are the characteristics of a good math task for this Practice? 
• Lends itself to multiple learning tools. (Tools may include; concrete models, measurement tools, graphs, diagrams, 

spreadsheets, statistical software, etc.) 
• Requires students to determine and use appropriate tools to solve problems. 
• Asks students to estimate in a variety of situations: 

 a task when there is no need to have an exact answer 
 a task when there is not enough information to get an exact answer    
 a task to check if the answer from a calculation is reasonable  
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#6 – Attend to precision. 
 

Summary of this Practice: 
• Communicate precisely with others and try to use clear mathematical language when discussing their reasoning.  
• Understand meanings of symbols used in mathematics and can label quantities appropriately.  
• Express numerical answers with a degree of precision appropriate for the problem context.  
• Calculate efficiently and accurately.  
 

Student Actions Teacher Actions 
• Use mathematical terms, both orally and in written 

form, appropriately. 
• Use and understanding the meanings of math 

symbols that are used in tasks. 
• Calculate accurately and efficiently. 
• Understand the importance of the unit in quantities. 

• Consistently use and model correct content 
terminology.  

• Expect students to use precise mathematical 
vocabulary during mathematical conversations. 

•  Question students to identify symbols, quantities 
and units in a clear manner. 

 
What questions develop this Practice? 
• What mathematical terms apply in this situation? How did you know your solution was reasonable? 
• Explain how you might show that your solution answers the problem. 
• Is there a more efficient strategy? 
• How are you showing the meaning of the quantities? 
• What symbols or mathematical notations are important in this problem? 
• What mathematical language..., definitions..., properties can you use to explain...? 
• How could you test your solution to see if it answers the problem? 

 
What are the characteristics of a good math task for this Practice? 
• Requires students to use precise vocabulary (in written and verbal responses) when communicating mathematical 

ideas. 
• Expects students to use symbols appropriately. 
• Embeds expectations of how precise the solution needs to be (some may more appropriately be estimates). 
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#7 – Look for and make use of structure. 
 

Summary of this Practice: 
• Apply general mathematical rules to specific situations.  
• Look for the overall structure and patterns in mathematics.  
• See complicated things as single objects or as being composed of several objects.  
 

Student Actions Teacher Actions 
• Look closely at patterns in numbers and their 

relationships to solve problems. 
• Associate patterns with the properties of operations 

and their relationships. 
• Compose and decompose numbers and number 

sentences/expressions. 

• Encourage students to look for something they 
recognize and having students apply the information 
in identifying solution paths (i.e. 
compose/decompose numbers and geometric 
figures, identify properties, operations, etc.) 

• Expect students to explain the overall structure of the 
problem and the big math idea used to solve the 
problem. 

 
What questions develop this Practice? 
• What observations do you make about...? What do you notice when...? 
• What parts of the problem might you eliminate..., simplify...? 
• What patterns do you find in...? 
• How do you know if something is a pattern? 
• What ideas that we have learned before were useful in solving this problem? 
• What are some other problems that are similar to this one? How does this relate to...? 
• In what ways does this problem connect to other mathematical concepts? 

 
What are the characteristics of a good math task for this Practice? 
• Requires students to look for the structure within mathematics in order to solve the problem. (i.e. – decomposing 

numbers by place value; working with properties; etc.) 
• Asks students to take a complex idea and then identify and use the component parts to solve problems. i.e. 

Building on the structure of equal sharing, students connect the understanding to the traditional division algorithm. 
When “unit size” cannot be equally distributed, it is necessary to break down into a smaller “unit size”.  (example 
below) 

 
• Expects students to recognize and identify structures from previous experience(s) and apply this understanding in a 

new situation. i.e. 7 × 8 = (7 × 5) + (7 × 3) OR 7 × 8 = (7 × 4) + (7 × 4) new situations could be, distributive 
property, area of composite figures, multiplication fact strategies. 
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#8 – Look for and express regularity in repeated reasoning. 
 
Summary of this Practice: 
• See repeated calculations and look for generalizations and shortcuts.  
• See the overall process of the problem and still attend to the details.  
• Understand the broader application of patterns and see the structure in similar situations. 
• Continually evaluate the reasonableness of their intermediate results.  
 

Student Actions Teacher Actions 
• Notice if processes are repeated and look for both 

general methods and shortcuts. 
• Evaluate the reasonableness of intermediate results 

while solving. 
•  Make generalizations based on discoveries and 

constructing formulas when appropriate. 

• Ask what math relationships or patterns can be used 
to assist in making sense of the problem. 

• Ask for predictions about solutions at midpoints 
throughout the solution process. 

• Question students to assist them in creating 
generalizations based on repetition in thinking and 
procedures. 

 
What questions develop this Practice? 
• Will the same strategy work in other situations?  
• Is this always true, sometimes true or never true? How would we prove that...? 
• What do you notice about...? 
• What is happening in this situation? What would happen if...? 
• Is there a mathematical rule for...? 
• What predictions or generalizations can this pattern support? What mathematical consistencies do you notice? 

 
What are the characteristics of a good math task for this Practice? 
• Present several opportunities to reveal patterns or repetition in thinking, so students can make a generalization or 

rule. 
• Requires students to see patterns or relationships in order to develop a mathematical rule. 
• Expects students to discover the underlying structure of the problem and come to a generalization. 
• Connects to a previous task to extend learning of a mathematical concept. 
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In Grade 7, instructional time should focus on five critical areas:   
 

1. Developing understanding of and applying proportional relationships; 
Students extend their understanding of ratios and develop understanding of proportionality to solve single- and 
multi-step problems.  Students use their understanding of ratios and proportionality to solve a wide variety of 
percent problems, including those involving discounts, interest, taxes, tips, and percent increase or decrease.  
Students solve problems about scale drawings by relating corresponding lengths between the objects or by 
using the fact that relationships of lengths within an object are preserved in similar objects.  Students graph 
proportional relationships and understand the unit rate informally as a measure of the steepness of the related 
line.  They distinguish proportional relationships from other relationships. 

 
2. Developing understanding of operations with rational numbers.  

Students develop a unified understanding of number, recognizing fractions, decimals (that have a finite or a 
repeating decimal representation), and percent as different representations of rational numbers.  Students 
extend addition, subtraction, multiplication, and division to all rational numbers, maintaining the properties of 
operations and the relationships between addition and subtraction, and multiplication and division.  

 
3. Working with expressions and linear equations. 

Students refine their work by viewing negative numbers in terms of everyday contexts (e.g., amounts owed or 
temperatures below zero), students explain and interpret the rules for adding, subtracting, multiplying, and 
dividing with negative numbers.  They use the arithmetic of rational numbers as they formulate expressions and 
equations in one variable and use these equations to solve problems. 
 

4. Solving problems involving scale drawings and working with two- and three-dimensional shapes to solve 
problems involving area, surface area, and volume. 
Students continue their work with area from Grade 6, solving problems involving the area and circumference of 
a circle. Students will explore and generalize formulas for volume and surface area of right prisms and cylinders. 
In preparation for work on congruence and similarity in Grade 8 they reason about relationships among two- 
dimensional figures using scale drawings. Students work with the relationships between three-dimensional 
figures and two- dimensional figures by examining cross- sections of three-dimensional figures and shapes 
created by rotating a two-dimensional shape around an edge. They solve real-world and mathematical problems 
involving area, surface area, and volume of two- and three-dimensional objects composed of triangles, 
quadrilaterals, polygons, cubes, right prisms, and cylinders. This sets the stage for studying cones and pyramids 
in Grade 8. 

 
5. Drawing inferences about populations based on samples. 

Students build on their previous work with single data distributions to compare two data distributions and 
address questions about differences between populations.  They begin informal work with random sampling to 
generate data sets and learn about the importance of representative samples for drawing inferences.  

Critical Areas for Mathematics in 7th Grade 
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The Dynamic Learning Maps and Essential Elements are knowledge and skills linked to the grade-level expectations 
identified in the Common Core State Standards. The purpose of the Dynamic Learning Maps Essential Elements is to 
build a bridge from the content in the Common Core State Standards to academic expectations for students with the 
most significant cognitive disabilities.  
 

For more information please visit the Dynamic Learning Maps and Essential Elements website. 
  

Dynamic Learning Maps (DLM) and Essential Elements 

http://www.ksde.org/Agency/Division-of-Learning-Services/Career-Standards-and-Assessment-Services/CSAS-Home/Assessments/Dynamic-Learning-Maps-DLM-Essential-Elements
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The term “growth mindset” comes from the groundbreaking work of Carol 
Dweck. She identified that everyone holds ideas about their own potential. 
Some people believe that their intelligence is more or less fixed in math – 
that you can do math or you can’t, while others believe they can learn 
anything and that their intelligence can grow. 
 
In a fixed mindset, people believe their basic qualities, like their 
intelligence or talent, are simply fixed traits. They spend their time 

documenting their intelligence or talent instead of developing it. They also believe that talent alone creates success—
without effort. Students with a fixed mindset are those who are more likely to give up easily. 
 
In a growth mindset, people believe that their most basic abilities can be developed through dedication and hard 
work—brains and talent are just the starting point. This view creates a love of learning and a resilience that is essential 
for great accomplishment. Students with a growth mindset are those who keep going even when work is hard, and who 
are persistent.  
 
It is possible to change mindsets and to shift students’ mindsets from fixed to growth and cause higher mathematics 
achievement and success in life. Watch this short video to get a better understanding of what Growth Mindset is and the 
benefits it can bring our students.  
 
You can find a variety of resources related to Growth Mindset at: http://community.ksde.org/Default.aspx?tabid=6383. 
 

  

 

Growth Mindset 

http://tedxmanhattanbeach.com/past-events/october-2012-conference-journey-to-purpose/presenters/eduardo-briceno/
http://community.ksde.org/Default.aspx?tabid=6383
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 Major Clusters  Supporting Clusters  Additional Clusters 

Ratios and Proportional Relationships (7.RP) 
A. Analyze proportional relationships and use them to solve real-world and mathematical problems. 

7.RP.1  7.RP.2  7.RP.3  

The Number System (7.NS) 
• Apply and extend previous understandings of operations with 

fractions to add, subtract, multiply, and divide rational numbers. 
 7.NS.1  7.NS.2  7.NS.3 

Expressions and Equations (7.EE) 
A. Use properties of operations to generate equivalent expressions. 

 7.EE.1  7.EE.2  
B. Solve real-life and mathematical problems using numerical and 

algebraic expressions and equations. 
 7.EE.3  7.EE.4 

Geometry (7.G) 
A. Draw, construct, and describe geometrical figures and describe the 

relationships between them. 
 7.G.1  7.G.2  7.G.3 

B. Solve real-life and mathematical problems involving area, surface 
area, and volume. 

 7.G.4  7.G.5  7.G.6 

Statistics and Probability (7.SP) 
A. Use random sampling to draw inferences about a population. 

 7.SP.1  7.SP.2 
B. Draw informal comparative inferences about two populations. 

 7.SP.3  7.SP.4 
C. Investigate chance processes and develop, use, and evaluate probability models. 

 7.SP.5  7.SP.6  7.SP.7  7.SP.8 
  

Grade 7 Content Standards Overview 

Standards for 
Mathematical Practices 

1. Make sense of problems and 
persevere in solving them. 

2. Reason abstractly and 
quantitatively. 

3. Construct viable arguments and 
critique the reasoning of others. 

4. Model with mathematics. 
5. Use appropriate tools strategically. 
6. Attend to precision. 
7. Look for and make use of 

structure. 
8. Look for and express regularity in 

repeated reasoning. 
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 Major Clusters  Supporting Clusters  Additional Clusters 

Domain: Ratios and Proportional Relationships (RP) 
 
 Cluster:  Analyze proportional relationships and use them to solve real-world and mathematical problems. 
 
Standard: Grade 7.RP.1    
Compute unit rates associated with ratios of fractions, including ratios of lengths, areas and other quantities measured 

in like or different units. For example, if a person walks 
1
2
 mile in each 

1
4
 hour, compute the unit rate as the complex 

fraction 
1
2
1
4

 miles per hour (interpreting a complex fraction as division of fractions), equivalently 2 miles per hour. (7.RP.1) 

 
Suggested Standards for Mathematical Practice (MP): 
 MP.1 Make sense of problems and persevere in solving them. 
 MP.2 Reason abstractly and quantitatively. 
 MP.3 Construct viable arguments and critique the reasoning of others. 
 MP.4 Model with mathematics. 
 MP.5 Use appropriate tools strategically. 
 MP.6 Attend to precision. 
 MP.7 Look for and make use of structure. 
 MP.8 Look for and express regularity in repeated reasoning. 

 
Connections:   
This cluster is connected to: 

• Grade 7 Critical Area of Focus #1:  Developing understanding of and applying proportional relationships and  
• Critical Area of Focus #2:  Developing understanding of operations with rational numbers and working with 

expressions and linear equations. 
• This cluster grows out of Ratio and Proportional Relationships (Grade 6) and the Number System (Grade 6) 
• Relates to Expressions and Equations (Grade 7). Cross curricular connections - economics, personal finance, 

reading strategies. 
 
Explanations and Examples:  
Students continue to work with unit rates from 6th grade; however, the comparison now includes fractions compared to 

fractions.  For example, if 
1
2
 gallon of paint covers 

1
6
 of a wall, then the amount of paint needed for the one wall (the unit 

rate) can be computed by rewriting the ratio, 

1
2 𝑔𝑔𝑔𝑔𝑔𝑔
1
6 𝑤𝑤𝑔𝑔𝑔𝑔𝑔𝑔

, into an equivalent form with a denominator of 1. This calculation 

gives 3  𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔
𝑤𝑤𝑔𝑔𝑔𝑔𝑔𝑔

. This standard requires only the use of ratios as quotients.   Fractions may be proper or improper. 
 
Instructional Strategies:   
Building from the development of rate and unit concepts in Grade 6, applications now need to focus on solving unit-rate 
problems with more sophisticated numbers: fractions per fractions.   
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 Major Clusters  Supporting Clusters  Additional Clusters 

Proportional relationships are further developed through the analysis of graphs, tables, equations and diagrams.  Ratio 
tables serve a valuable purpose in the solution of proportional problems.  This is the time to push for a deep 
understanding of what a representation of a proportional relationship looks like and what the characteristics are: a 
straight line through the origin on a graph, a “rule” that applies for all ordered pairs, an equivalent ratio or an expression 
that describes the situation, etc. Use the ratio table to compute the unit rate. Students will develop an understanding 
that, in order to find the unit rate, one can compute 𝑦𝑦

𝑥𝑥
 with any pair of values from the relationship.   

 
The previous example could be explored using multiple representations to compute the unit rate, i.e. the amount of 
paint required to cover one wall.  

                   
 
This is not the time for students to learn to cross multiply to solve problems. 
 
Although algorithms provide efficient means for finding solutions, the cross-product algorithm commonly used for 
solving proportions will not aid in the development of proportional reasoning.  Delaying the introduction of rules and 
algorithms will encourage thinking about multiplicative situations instead of indiscriminately applying rules.   
 
Because percents have been introduced as rates in Grade 6, the work with percents should continue to follow the 
thinking involved with rates and proportions.  Solutions to problems can be found by using the same strategies for 
solving rates, such as looking for equivalent ratios or based upon understandings of decimals. Previously, percents have 
focused on “out of 100”; now percents above 100 are encountered. 
 
Providing opportunities to solve problems based within contexts that are relevant to seventh graders will connect 
meaning to rates, ratios and proportions.   
 
Examples include: researching newspaper ads and constructing their own question(s), keeping a log of prices 
(particularly sales) and determining savings by purchasing items on sale, timing students as they walk a lap on the track 
and figuring their rates, creating open-ended problem scenarios with and without numbers to give students the 
opportunity to demonstrate conceptual understanding, inviting students to create a similar problem to a given problem 
and explain their reasoning.   
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 Major Clusters  Supporting Clusters  Additional Clusters 

Tools/Resources: 
For detailed information see Ratios and Proportional Reasoning Learning Progression. 
 
Illustrative Mathematics Grade 7 tasks: Scroll to the appropriate section to find named tasks. 

• 7.RP.A 
o Track Practice 
o Stock Swaps, Variation 2 
o Stock Swaps, Variation 3 
o Sale! 
o Thunder and Lightning 
o Climbing the steps of El Castillo 
o Dueling Candidates 
o Track Practice 

• 7.RP.A.1 
o Cooking with the Whole Cup 
o Molly's Run 
o Molly's Run, Assessment Variation 

Georgia Department of Education website: 
• “See Saw Nickels”-.   Students focus on extending their conceptual understanding of proportional relationships 

and direct variation to include inverse relationships. Students will use manipulatives, completed charts, and 
graphs to further their understanding. 

 
Common Misconceptions: 
Students may confuse the significance of the numerator compared to the denominator. 
 
Students may believe that the denominator with a greater digit automatically has a greater value than a fraction with a 

lesser denominator, e.g. , 1
8

> 1
3
. 

 
Students may rely on one configuration for setting up proportions without realizing that other configurations may also 
be correct (within ratios and between ratios). 
 
Students may have difficulty calculating unit rate, recognizing unit rate when it is graphed on a coordinate plane, and 
realizing that unit rate is also the slope of a line. 
 
Students may misinterpret or not have mastery of the precise meanings and appropriate use of ratio and proportion 
vocabulary. 
 
Students may miscomprehend the difference between additive reasoning versus multiplicative reasoning. 
 

Students may compute the unit rate as 𝑥𝑥
𝑦𝑦

 instead of 𝑦𝑦
𝑥𝑥

. Discuss the different meanings between 1
3
 wall/gallon and 3 

gallons/wall. Students should write the correct unit rate for the ratio table.   

  

http://commoncoretools.files.wordpress.com/2012/02/ccss_progression_rp_67_2011_11_12_corrected.pdf
https://tasks.illustrativemathematics.org/7
http://gadoe.georgiastandards.org/mathframework.aspx?PageReq=MathNickels
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 Major Clusters  Supporting Clusters  Additional Clusters 

Domain: Ratios and Proportional Relationships (RP) 
Cluster:  Analyze proportional relationships and use them to solve real-world and mathematical problems 
 
Standard: Grade 7.RP.2 

Recognize and represent proportional relationships between quantities: 
7.RP.2a. Determine whether two quantities are in a proportional relationship, e.g. by testing for equivalent ratios 

in a table or graphing on a coordinate plane and observing whether the graph is a straight line through 
the origin. (7.RP.2a) 

7.RP.2b. Analyze a table or graph and recognize that, in a proportional relationship, every pair of numbers has 
the same unit rate (referred to as the “m”). (7.RP.2b) 

7.RP.2c. Represent proportional relationships by equations. For example, if total cost t is proportional to the 
number n of items purchased at a constant price p, the relationship between the total cost and the 
number of items can be expressed as 𝑡𝑡 = 𝑝𝑝𝑝𝑝. (7.RP.2c) 

7.RP.2d. Explain what a point (x, y) on the graph of a proportional relationship means in terms of the situation, 
with special attention to the points (0, 0) and (1, r) where r is the unit rate. (7.RP.2d) 

 
Suggested Standards for Mathematical Practice (MP): 
 MP.1 Make sense of problems and persevere in solving them. 
 MP.2 Reason abstractly and quantitatively. 
 MP.3 Construct viable arguments and critique the reasoning of others. 
 MP.4 Model with mathematics. 
 MP.5 Use appropriate tools strategically. 
 MP.6 Attend to precision. 
 MP.7 Look for and make use of structure. 
 MP.8 Look for and express regularity in repeated reasoning. 

 
Connections:   See 7.RP. 1 
 
Explanations and Examples:   
Students’ understanding of the multiplicative reasoning used with proportions continues from 6th grade. 
Students determine if two quantities are in a proportional relationship from a table.  
For example, the table below gives the price for different number of books.   
Do the numbers in the table represent a proportional relationship? 
 

Number of Books Price 
1 3 
3 9 
4 12 
7 18 

 
Students can examine the numbers to see that 1 book at 3 dollars is equivalent to 4 books for 12 dollars since both sides 
of the tables can be multiplied by 4.  However, the 7 and 18 are not proportional since 1 book multiplied by 7 and 3 
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 Major Clusters  Supporting Clusters  Additional Clusters 

dollars multiplied by 7 will not give 7 books for 18 dollars.  Seven books for $18 is not proportional to the other amounts 
in the table; it does not have the same unit rate.  
 
Students graph relationships to determine if two quantities are in a proportional relationship and interpret the ordered 
pairs.  If the amounts from the table above are graphed (number of books, price), the pairs (1, 3), (3, 9), and (4, 12) will 
form a straight line through the origin (0 books cost 0 dollars), indicating that these pairs are in a proportional 
relationship.  The ordered pair (4, 12) means that 4 books cost $12. However, the ordered pair (7, 18) would not be on 
the line, indicating that it is not proportional to the other pairs. 
 
The ordered pair (1, 3) indicates that 1 book is $3, which is the unit rate.  The y-coordinate when x = 1  
will be the unit rate. Students identify this amount from tables (see example above), graphs, equations and verbal 
descriptions of proportional relationships. 
 
The graph below represents the price of the bananas at one store.  What is the unit rate?  From the graph, it can be 
determined that 4 pounds of bananas is $1.00; therefore, 1 pound of bananas is $0.25, the unit rate for the graph.  
 
Note: Any point on the graph will yield this unit rate. 
 

 
 
The cost of bananas at another store can be determined by the equation:  P = $0.35n, where P is the price and n is the 
number of pounds. What is the unit rate?   
Students write equations from context and identify the coefficient as the unit rate. 
 
Note:  This standard focuses on the representations of proportions. Solving proportions is addressed in 7.RP.3. 
 
Students may use a content web site and/or interactive white board to create tables and graphs of proportional or non-
proportional relationships.  Graphing proportional relationships represented in a table helps students recognize that the 
graph is a line through the origin (0,0) with a unit rate equal to the slope of the line. 
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 Major Clusters  Supporting Clusters  Additional Clusters 

Examples: 
A student is making trail mix.  Create a graph to determine if the quantities of nuts and fruit are proportional for each 
serving size listed in the table.  If the quantities are proportional, what is the unit rate that defines the relationship?   
Explain how you determined the unit rate and how it relates to both the table and graph.     
 

Serving Size 1 2 3 4 
Cups of Nuts (x) 1 2 3 4 
Cups of Fruit (y) 2 4 6 8 

 
 
 
 
 
The relationship is proportional. For each of the other serving sizes there are 2 cups of fruit for every 1 cup of nuts (2:1). 
The unit rate is shown in the first column of the table and by the slope of the line on the graph. 
 
The graph below represents the cost of gum packs as a unit rate of $2 dollars for every pack of gum.  The unit rate is 
represented as $2 per pack. Represent the relationship using a table and an equation. 
 
 
              
               
 
 
 
 
 
 
 
 
A common error is to reverse the position of the variables when writing equations.  Students may find it useful to use 
variables specifically related to the quantities rather than using x and y.  Constructing verbal models can also be helpful.  
A student might describe the situation as “the number of packs of gum times the cost for each pack is the total cost in 
dollars”.  They can use this verbal model to construct the equation.  Students can check their equation by substituting 
values and comparing their results to the table.  
 
The checking process helps student revise and recheck their model as necessary.  The number of packs of gum times the 
cost for each pack is the total cost 𝑔𝑔 × 2 = 𝑑𝑑. 
  

Number of Packs of Gum 
 

Cost in Dollars 
 0 0 

1 2 
2 4 
3 6 
4 8 

Solution: 
Table: 

Equation: 𝑑𝑑 = 2𝑔𝑔, where d is the cost in dollars and g is the packs of gum. 
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 Major Clusters  Supporting Clusters  Additional Clusters 

Tools/Resources: 
For detailed information see Progressions for the Common Core State Standards in Mathematics: 3-5 Number and 
Operations – Fractions. 
 
Illustrative Mathematics Grade 7 tasks: Scroll to the appropriate section to find named tasks. 

• 7.RP.A.2 
o Music Companies, Variation 1 
o Art Class, Variation 1 
o Art Class, Variation 2 
o Buying Coffee 
o Sore Throats, Variation 1 
o Robot Races 
o Robot Races, Assessment Variation 
o Art Class, Assessment Variation 
o Buying Bananas, Assessment Version 
o Walk-a-thon 2 

• 7.RP.A.2.c 
o Proportionality 

Georgia Department of Education website: 
• “Walking to Scoops”-.  Students use a real-world scenario to explore the walking rate on time and distance 

traveled. 
• “The Final Challenge”- Students construct plane figures to create a regular octagon using tools and construction 

techniques. 
• “Similar Triangles”- Students use an object perpendicular to the ground and measurement tool and their 

shadow to determine height of objects. 
 
NCTM Illuminations – NCTM has many great resources available to educators, some of these resources (i.e. interactives) 
are open to any educator while others (i.e. lessons) require an individual or institutional membership. If you find that a 
resource referenced in the flip books requires membership access, check with your school/district to see if they have an 
institutional membership which would grant you access all NCTM documents. If they do not have a membership, this 
would be a valuable resource to request. 

• “Feeding Frenzy”, Illuminations Lesson-students multiply and divide a recipe to feed groups of various sizes. 
Students will use unit rates and proportions and think critically about real world applications of a backing 
problem. 

 
 
 
  

http://commoncoretools.files.wordpress.com/2012/02/ccss_progression_nf_35_2011_08_12.pdf
http://commoncoretools.files.wordpress.com/2012/02/ccss_progression_nf_35_2011_08_12.pdf
https://tasks.illustrativemathematics.org/7
http://lpsl.coe.uga.edu/mile3/resa/gpsinaction/WalkingToScoops.html
http://gadoe.georgiastandards.org/mathframework.aspx?PageReq=MathChallenge#gps39
http://lpsl.coe.uga.edu/mile3/resa/gpsinaction/SimilarTriangles.html
https://linkprotect.cudasvc.com/url?a=https%3a%2f%2filluminations.nctm.org%2fDefault.aspx&c=E,1,HrFPOORirgO4sdp3Hmx1SqW4Z6rTQSFu-hvDPq_-7vipRZjE5yZvUxWDA2MiK-9XvK95iiIewk8XUxNAUu_8lI8MRZ6WEh7dhiit-N6ptg,,&typo=1
http://illuminations.nctm.org/Lesson.aspx?id=2854
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 Major Clusters  Supporting Clusters  Additional Clusters 

Domain: Ratios and Proportional Relationships (RP) 
Cluster:  Analyze proportional relationships and use them to solve real-world and mathematical problems. 
 
Standard: Grade 7.RP.3    
Use proportional relationships to solve multistep ratio and percent problems. Examples: simple interest, tax, markups 
and markdowns, gratuities and commissions, fees, percent increase and decrease, percent error. (7.RP.3) 
 
Suggested Standards for Mathematical Practice (MP): 
 MP.1 Make sense of problems and persevere in solving them. 
 MP.2 Reason abstractly and quantitatively. 
 MP.3 Construct viable arguments and critique the reasoning of others. 
 MP.4 Model with mathematics. 
 MP.5 Use appropriate tools strategically. 
 MP.6 Attend to precision. 
 MP.7 Look for and make use of structure. 
 MP.8 Look for and express regularity in repeated reasoning. 

 
Connections:   See 7.RP.1 
 
Explanations and Examples:   
In 6th grade, students used ratio tables and unit rates to solve problems.  Students expand their understanding of 
proportional reasoning to solve problems that are easier to solve with cross-multiplication. Students understand the 
mathematical foundation for cross-multiplication. 
 

For example, a recipe calls for 
3
4
 teaspoon of butter for every 2 cups of milk.   

If you increase the recipe to use 3 cups of milk, how many teaspoons of butter are needed? 
Using these numbers to find the unit rate may not be the most efficient method.  Students can set up the following 
proportion to show the relationship between butter and milk. 

3
4
2

=
𝑥𝑥
3

 

 
The use of proportional relationships is also extended to solve percent problems involving tax, markups and markdowns 
simple interest (𝐼𝐼 = 𝑝𝑝𝑝𝑝𝑡𝑡, 𝐼𝐼 = 𝑖𝑖𝑝𝑝𝑡𝑡𝑖𝑖𝑝𝑝𝑖𝑖𝑖𝑖𝑡𝑡,𝑝𝑝 = 𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑝𝑝𝑖𝑖, 𝑝𝑝 = 𝑝𝑝𝑟𝑟𝑡𝑡𝑖𝑖, 𝑟𝑟𝑝𝑝𝑑𝑑 𝑡𝑡 = 𝑡𝑡𝑖𝑖𝑡𝑡𝑖𝑖), gratuities and commissions, fees, 
percent increase and decrease, and percent error. 
 
For example, Games Unlimited buys video games for $10.  The store increases the price 300%? What is the price of the 
video game? 
 

Using proportional reasoning, if $10 is 100% then what amount would be 300%? Since 300% is 3 times 
100%, $30 would be $10 times 3.  Thirty dollars represents the amount of increase from 
$10 so the new price of the video game would be $40. 
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 Major Clusters  Supporting Clusters  Additional Clusters 

Finding the percent error is the process of expressing the size of the error (or deviation) between two measurements.  
To calculate the percent error, students determine the absolute deviation (positive difference) between an actual 
measurement and the accepted value and then divide by the accepted value. Multiplying by 100 will give the percent 
error. 
 

% 𝑖𝑖𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝 =
|𝑦𝑦𝑒𝑒𝑦𝑦𝑝𝑝 𝑝𝑝𝑖𝑖𝑖𝑖𝑦𝑦𝑝𝑝𝑡𝑡 − 𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑡𝑡𝑖𝑖𝑑𝑑 𝑣𝑣𝑟𝑟𝑝𝑝𝑦𝑦𝑖𝑖|

𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑡𝑡𝑖𝑖𝑑𝑑 𝑣𝑣𝑟𝑟𝑝𝑝𝑦𝑦𝑖𝑖
× 100% 

 
For example, you need to purchase a countertop for your kitchen.  You measured the countertop as 5 ft.   
The actual measurement is 4.5 ft.  What is the percent error? 
 

% 𝑖𝑖𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝 =
|5𝑓𝑓𝑡𝑡 − 4.5𝑓𝑓𝑡𝑡|

4.5
× 100 

 

% 𝑖𝑖𝑝𝑝𝑝𝑝𝑒𝑒𝑝𝑝 =
|0.5𝑓𝑓𝑡𝑡|

4.5
× 100 

 
Students should be able to explain or show their work using a representation (numbers, words, pictures, physical 
objects, or equations) and verify that their answer is reasonable.  Models help students to identify the parts of the 
problem and how the values are related.  For percent increase and decrease, students identify the starting value, 
determine the difference, and compare the difference in the two values to the starting value. 
 
Examples: 
Gas prices are projected to increase 124% by April 2015.  A gallon of gas currently costs $4.17.  
What is the projected cost of a gallon of gas for April 2015? 
 
A student might say: “The original cost of a gallon of gas is $4.17. An increase of 100% means that the cost will double.  I 
will also need to add another 24% to figure out the final projected cost of a gallon  
of gas.  Since 25% of $4.17 is about $1.04, the projected cost of a gallon of gas should be around $9.40.”  
 

$4.17 + $4.17 + (0.24 ⋅ 4.17) = 2.24 × 4.17 
100% 100% 24% 

$4.17 $4.17 ? 

 
A sweater is marked down 33%.  Its original price was $37.50.  
What is the price of the sweater before sales tax? 
 

$37.50 
Original Price of Sweater 

33% of $37.50 
67% of $37.50 
Sale Price of sweater 

 
The discount is 33% times 37.50. The sale price of the sweater is the original price minus the discount or 67% of the 
original price of the sweater, or Sale Price = 0.67 x Original Price. 
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A shirt is on sale for 40% off. The sale price is $12.  What was the original price?  
What was the amount of the discount? 
 

Discount 
40% of Original Price 

Sale Price - $12 
60% of original price 

Original Price (p) 
 
At a certain store, 48 television sets were sold in April.  The manager at the store wants to encourage the sales team to 
sell more TVs and is going to give all the sales team members a bonus if the number of TVs sold increases by 30% in May.  
How many TVs must the sales team sell in May to receive the bonus?  Justify your solution. 
 
A salesperson set a goal to earn $2,000 in May.  He receives a base salary of $500 as well as a 10% commission for all 
sales.  How much merchandise will he have to sell to meet his goal?  
 
After eating at a restaurant, your bill before tax is $52.50.  The sales tax rate is 8%.  You decide to leave a 20% tip for the 
waiter based on the pre-tax amount.  How much is the tip you leave for the waiter?  How much will the total bill be, 
including tax and tip?   Express your solution as a multiple of the bill. 
 

𝑇𝑇ℎ𝑖𝑖 𝐴𝐴𝑡𝑡𝑒𝑒𝑦𝑦𝑝𝑝𝑡𝑡 𝑃𝑃𝑟𝑟𝑖𝑖𝑑𝑑 = 0.20 × $52.50 + 0.08 × $52.50 = 0.28 × $52.50 
 
Instructional Strategies:   See 7.RP.1 
 
Tools & Resources: 
Illustrative Mathematics Grade 7 tasks: Scroll to the appropriate section to find named tasks. 

• 7.RP.A 
o Stock Swaps, Variation 2 
o Sale! 

• 7.RP.A.3 
o Buying Protein Bars and Magazines 
o Chess Club 
o Comparing Years 
o Friends meeting on bikes 
o Music Companies, Variation 2 
o Selling Computers 
o Tax and Tip 
o Sand Under the Swing Set 

  

https://tasks.illustrativemathematics.org/7
http://illustrativemathematics.org/illustrations/98
http://illustrativemathematics.org/illustrations/114
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Domain: The Number System (NS) 

Cluster: Apply and extend previous understandings of operations with positive rational numbers to add, 
subtract, multiply, and divide all rational numbers. 
 
Standard:  Grade 7.NS.1   

Represent addition and subtraction on a horizontal or vertical number line diagram. 
7.NS.1a. Describe situations in which opposite quantities combine to make 0. Show that a number and its 

opposite have a sum of 0 (are additive inverses). For example, show zero-pairs with two-color counters. 
(7.NS.1a) 

7.NS.1b. Show 𝑝𝑝 + 𝑞𝑞 as the number located a distance |𝑞𝑞| from p, in the positive or negative direction depending 
on whether q is positive or negative. (7.NS.1b) 

7.NS.1c. Model subtraction of rational numbers as adding the additive inverse,  
𝑝𝑝 − 𝑞𝑞 = 𝑝𝑝 + (−𝑞𝑞). (7.NS.1c) 

7.NS.1d. Model subtraction as the distance between two rational numbers on the number line where the 
distance is the absolute value of their difference. (7.NS.1c) 

7.NS.1e. Apply properties of operations as strategies to add and subtract rational numbers. (7.NS.1d) 
 
Suggested Standards for Mathematical Practice (MP): 
 MP.2 Reason abstractly and quantitatively.  
 MP.4 Model with mathematics. 
 MP.6 Attend to precision 
 MP.7 Look for and make use of structure 

 
Connections: 
This cluster is connected to: 

• 6.NS.5- Students are introduced to the sign signifying a direction on a number line and in the coordinate plane 
and the definition for opposite numbers.  

• 6.NS.6b- Students learn how to position integers on a horizontal and vertical number line.  
• 6.NS.7c- Students’ understand that the absolute value of a number is its distance from zero on the number line.  
• Grade 7 Critical Area of Focus #2:  Developing understanding of operations with rational numbers and working 

with expressions and linear equations. 
 
Explanations and Examples:   
Students add and subtract rational numbers using a number line. For example, to add −5 + 7, students would find -5 on 
the number line and move 7 in a positive direction (to the right). The stopping point of 2 is the sum of this expression.  
Students also add negative fractions and decimals and interpret solutions in given contexts. 
 
Visual representations may be helpful as students begin this work; they become less necessary as students become 
more fluent with the operations.  
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Examples: 
Use a number line to illustrate: 

𝑝𝑝 − 𝑞𝑞 
𝑝𝑝 + (−𝑞𝑞) 

Is this equation true:  𝑝𝑝 − 𝑞𝑞 = 𝑝𝑝 + (−𝑞𝑞) 
 
-3 and 3 are shown to be opposites on the number line because they are equal distance from zero and therefore have 
the same absolute value and the sum of the number and it’s opposite is zero. 
 

 
 
 
You have $4 and you need to pay a friend $3.  What will you have after paying your friend? 
4 + (−3) = 1 𝑒𝑒𝑝𝑝 (−3) + 4 = 1  

 
 
Name a number that makes each statement true.  Justify your solution by showing a model or providing an explanation.   
 

• −4.8+? = 𝑟𝑟 𝑝𝑝𝑒𝑒𝑖𝑖𝑖𝑖𝑡𝑡𝑖𝑖𝑣𝑣𝑖𝑖 𝑝𝑝𝑦𝑦𝑡𝑡𝑛𝑛𝑖𝑖𝑝𝑝 
• ?−3

2
= 𝑟𝑟 𝑝𝑝𝑖𝑖𝑔𝑔𝑟𝑟𝑖𝑖𝑡𝑡𝑣𝑣𝑖𝑖 𝑝𝑝𝑦𝑦𝑡𝑡𝑛𝑛𝑖𝑖𝑝𝑝 

• −2.15−? = 𝑟𝑟 𝑝𝑝𝑖𝑖𝑔𝑔𝑟𝑟𝑡𝑡𝑖𝑖𝑣𝑣𝑖𝑖 𝑝𝑝𝑦𝑦𝑡𝑡𝑛𝑛𝑖𝑖𝑝𝑝 
 
Instructional Strategies:   
This cluster (7.NS.1-3) builds upon the understandings of rational numbers in Grade 6: 
 

• quantities can be shown using + or – as having opposite directions or values, 
• points on a number line show distance and direction, 
• opposite signs of numbers indicate locations on opposite sides of 0 on the number line, 
• the opposite of an opposite is the number itself, 
• the absolute value of a rational number is its distance from 0 on the number line, 
• the absolute value is the magnitude for a positive or negative quantity, and 
• locating and comparing locations on a coordinate grid by using negative and positive numbers. 

 
Learning now moves to exploring and ultimately formalizing rules for operations (addition, subtraction, multiplication 
and division) with integers.  Using both contextual and numerical problems, students should explore what happens 
when negatives and positives are combined.  
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Two-color counters or colored chips can be used as a physical and kinesthetic model for adding and subtracting integers.  
With one color designated to represent positives and a second color for negatives, addition/subtraction can be 
represented by placing the appropriate numbers of chips for the addends and their signs on a board.   Using the notion 

of opposites, the board is simplified by removing pairs of opposite 
colored chips.  The answer is the total of the remaining chips with the 
sign representing the appropriate color.  Repeated opportunities over 
time will allow students to compare the results of adding and 
subtracting pairs of numbers, leading to the generalization of the 
rules.   
 
Additionally, it is important for students to understand that adding 
zero pairs to the modeled situation does not change the value. For 
example, 3 − 7 = can be modeled to reinforce the concept of 
subtraction as “taking away” by adding zero pairs until you have 
enough positive counters to allow removal of 7 positive counters.   

 
Number lines present a visual image for students to explore and record addition and subtraction results.  
Fractional rational numbers and whole numbers should be used in computations and explorations and a number line 
provides a more flexible representation than counters.  
 
Applying properties of operations as strategies can be practiced using well-structured number talks. As the student 
explains the strategy used, the teacher highlights the property. For example, −12 + 7 = can be modeled with a number 
line as below.  
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Students should be able to give contextual examples of integer operations, write and solve equations for real- world 
problems and explain how the properties of operations apply.  Real-world situations could include: profit/loss, money, 
weight, sea level, debit/credit, football yardage, etc. 
 

Resources/Tools: 
For detailed information, see Progressions for the Common Core State Standards in Mathematics:  Number System 6-8. 
 
Illustrative Mathematics Grade 7 tasks: Scroll to the appropriate section to find named tasks. 

• 7.NS.A.1 
o Comparing Freezing Points 
o Operations on the number line 
o Distances on the Number Line 2 
o Bookstore Account 
o Rounding and Subtracting 
o Distances Between Houses 
o Differences and Distances 
o Differences of Integers 

  

http://commoncoretools.me/wp-content/uploads/2013/07/ccssm_progression_NS+Number_2013-07-09.pdf
https://tasks.illustrativemathematics.org/7
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Domain: The Number System (NS) 
Cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, 
and divide rational numbers. 
 
Standard:  Grade 7.NS.2   
Apply and extend previous understandings of multiplication and division of positive rational numbers to multiply and 
divide all rational numbers.  

7.NS.2a. Describe how multiplication is extended from positive rational numbers to all rational numbers by 
requiring that operations continue to satisfy the properties of operations, particularly the distributive 
property, leading to products such as (−1)(−1) = 1 and the rules for multiplying signed numbers. 
(7.NS.2a) 

7.NS.2b. Explain that integers can be divided, provided that the divisor is not zero, and every quotient of integers 
(with non-zero divisor) is a rational number. Leading to situations such that if p and q are integers, then 

−�𝑝𝑝
𝑞𝑞
� = −𝑝𝑝

𝑞𝑞
= 𝑝𝑝

−𝑞𝑞
. (7.NS.2b) 

7.NS.2c. Apply properties of operations as strategies to multiply and divide rational numbers. (7.NS.2c) 
7.NS.2d. Convert a rational number in the form of a fraction to its decimal equivalent using long division; know 

that the decimal form of a rational number terminates in 0s or eventually repeats. (7.NS.2d) 
 
Suggested Standards for Mathematical Practice (MP): 
 MP.2 Reason abstractly and quantitatively. 
 MP.4 Model with mathematics. 
 MP.6 Attend to precision 

 
Connections:   See 7.NS.1 
 
Explanations and Examples:   
Students recognize that when division of rational numbers is represented with a fraction bar, each number can have a 
negative sign.  Using long division from elementary school, students understand the difference between terminating and 
repeating decimals. This understanding is foundational for work with rational and irrational numbers in 8th grade.  For 
example, identify which fractions will terminate (the denominator of the fraction in reduced form only has factors of 2 
and/or 5.) 
 
Multiplication and division of integers is an extension of multiplication and division of whole numbers.  
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Using what students already know about positive and negative whole numbers and multiplication with its relationship to 
division, students should generalize rules for multiplying and dividing rational numbers. Multiply or divide the same as 
for positive numbers, then designate the sign according to the number of negative factors.  Students should analyze and 
solve problems leading to the generalization of the rules for operations with integers.  For example, beginning with 
known facts, students predict the answers for related facts, keeping in mind that the properties of operations apply (See 
Tables 1, 2 and 3 below). 
 
 

Table 1 Table 2 Table 3 
4 x 4 = 16 4 x 4 = 16 -4 x -4 = 16 

4 x 3 = 12 4 x 3 = 12 -4 x -3 = 12 

4 x 2 = 8 4 x 2 = 8 -4 x -2 = 8 

4 x 1 = 4 4 x 1 = 4 -4 x -1 = 4 

4 x 0 = 0 4 x 0 = 0 -4 x 0 = 0 

4 x -1 = -4 x 1 = -1 x - 4 = 

4 x - 2 = -4 x 2 = -2 x - 4 = 

4 x - 3 = -4 x 3 = -3 x - 4 = 

 

Using the language of “the opposite of” helps some students understand the multiplication of negatively signed 
numbers (−4 × −4 = 16, the opposite of 4 groups of -4).  Discussion about the tables should address the patterns in 
the products, the role of the signs in the products and commutativity of multiplication.  Then students should be asked 
to answer these questions and prove their responses: 

• Is it always true that multiplying a negative factor by a positive factor results in a negative product? 
• Does a positive factor times a positive factor always result in a positive product? 
• What is the sign of the product of two negative factors? 
• When three factors are multiplied, how is the sign of the product determined? 
• How is the numerical value of the product of any two numbers found? 

 
Students can use number lines with arrows and hops, groups of colored chips or logic to explain their reasoning.  When 
using number lines, establishing which factor will represent the length, number and direction of the hops will facilitate 
understanding.  Through discussion, generalization of the rules for multiplying integers would result. 

Division of integers is best understood by relating division to multiplication and applying the rules.  In time, students will 

transfer the rules to division situations. (Note: In 2b, this algebraic language �−�𝑝𝑝
𝑞𝑞
� = (−𝑝𝑝)

𝑞𝑞
= 𝑝𝑝

(−𝑞𝑞)� is written for the 

teacher’s information, not as an expectation for students.) 

Ultimately, students should solve other mathematical and real-world problems requiring the application of these rules 
with fractions and decimals. 



36 

 Major Clusters  Supporting Clusters  Additional Clusters 

In Grade 7, the awareness of rational and irrational numbers is initiated by observing the result of changing fractions to 
decimals. Students should be provided with families of fractions, such as, sevenths, ninths, thirds, etc. to convert to 
decimals using long division. The equivalents can be grouped and named (terminating or repeating).  Students should 
begin to see why these patterns occur.  Knowing the formal vocabulary rational and irrational is not expected 
 
Examples 
Examine the family of equations. What pattern do you see? 
Create a model and context for each of the products. 
Write and model the family of equations related to 2 × 3 = 6. 
 

Equation Number Line Model Context 
2 × 3 = 6 

 Selling two packages of apples at $3.00 per pack 

2 × −3 = −6 

 Spending 3 dollars each on 2 packages of apples 

−2 × 3 = −6 

 Owing 2 dollars to each of your three friends 

−2 × −3 = 6 

 
Forgiving 3 debts of $2.00 each 

 
Instructional Strategies:   
Instruction needs to focus on developing understanding of operations with rational numbers.  Students need multiple 
opportunities to develop a unified understanding of number, recognizing fractions, decimals (that have a finite or 
repeating decimal representation), and percent as different representations of rational numbers.  Students extend 
addition, subtraction, multiplication, and division to all rational numbers, maintaining the properties of operations and 
the relationships between addition and subtraction, and multiplication and division.  By applying these properties, and 
by viewing negative numbers in terms of everyday contexts (e.g. amounts owed or temperatures below zero), students 
explain and interpret the rules for “operating” with negative numbers. 
 
In Grade 7 the awareness of rational and irrational numbers is initiated by observing the result of changing fractions to 
decimals. Students should be provided with families of fractions, such as, sevenths, ninths, thirds, etc. to convert to 
decimals using long division. The equivalents can be grouped and named (terminating or repeating).  Students should 
begin to see why these patterns occur.  Knowing the formal vocabulary rational and irrational is not expected. 
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Tools/Resources: 
Illustrative Mathematics Grade 7 tasks: Scroll to the appropriate section to find named tasks. 

• 7.NS.A.2.d 
o Equivalent fractions approach to non-repeating decimals 
o Repeating decimal as approximation 
o Decimal Expansions of Fractions 

 
Common Misconceptions: 

• Students may incorrectly use integer rules 
• Students may confuse the absolute value symbol with the number one 
• Students may incorrectly use the additive inverse when working with operations of integers 
• Students may have confusion and misapplication of a complex fractions 
• Students may think that a number divided by zero is zero rather than undefined 

 

https://tasks.illustrativemathematics.org/7
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Domain: The Number System (NS) 

Cluster: Apply and extend previous understandings of operations with fractions to add, subtract, multiply, 
and divide rational numbers. 
 
Standard: Grade 7.NS.3   
Solve real-world and mathematical problems involving the four operations with rational numbers.  (Computations with 
rational numbers extend the rules for manipulating fractions to complex fractions.)  (7.NS.3) 
 
Suggested Standards for Mathematical Practice (MP): 
 MP.1 Make sense of problems and persevere in solving them. 
 MP.2 Reason abstractly and quantitatively. 
 MP.3 Construct viable arguments and critique the reasoning of others. 
 MP.4 Model with mathematics. 
 MP.5 Use appropriate tools strategically. 
 MP.6 Attend to precision. 
 MP.7 Look for and make use of structure. 
 MP.8 Look for and express regularity in repeated reasoning. 

 
Connections:   See 7.NS.2  
 
Explanations and Examples:   
Students use order of operations from sixth grade to write and solve problems with all rational numbers.  
 
Examples: 
Your cell phone bill is automatically deducting $32 from your bank account every month.  
How much will the deductions total for the year? 

−32 + −32 + −32 +−32 + −32 + −32 + −32 + −32 + −32 + −32 + −32 + −32 = 12(−32) 
 
It took a submarine 20 seconds to drop to 100 feet below sea level from the surface.  
What was the rate of the descent? 
 

−100 𝑓𝑓𝑖𝑖𝑖𝑖𝑡𝑡
20 𝑖𝑖𝑖𝑖𝑝𝑝𝑒𝑒𝑝𝑝𝑑𝑑𝑖𝑖

=
−5 𝑓𝑓𝑖𝑖𝑖𝑖𝑡𝑡
1 𝑖𝑖𝑖𝑖𝑝𝑝𝑒𝑒𝑝𝑝𝑑𝑑

= −5 𝑓𝑓𝑡𝑡/𝑖𝑖𝑖𝑖𝑝𝑝 

 
The three seventh grade classes at Ft. Riley Middle School collected the most box tops for a school fundraiser, and so 
they won a $600 prize to share between them.  Mrs. Molt’s class collected 3,760 box tops, Mrs. Johnson’s class collected 
2,301, and Mr. Handlos’ class collected 1,855.  How should they divide the money so that each class gets the same 
fraction of the prize money as the fraction of the box tops that they collected? 
 
A teacher might start out by asking questions like, "Which class should get the most prize money?  
Should Mrs. Molt’s class get more or less than half of the money?   
Mrs. Molt’s class collected about twice as many box tops as Mr. Handlos’ class - does that mean that  
Mrs. Molt’s class will get about twice as much prize money as Mr. Canyon's class?" 
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This task represents an opportunity for students to engage in Standard MP.5 Use appropriate tools strategically.  There 
is little benefit in students doing the computations by hand (few adults would), and so provides an opportunity to 
discuss the value of having a calculator and when it is (and is not) appropriate to use it. 
 
Sample Solution: 
All together, the students collected 3,750 + 2,301 + 1,855 = 7,916 box tops. 

Mr. Molt’s class collected 3760
7916

of the box tops.     

The amount for Mrs. Molt’s class is �3760
7916

�600 ≈ 284.99 

Mrs. Johnson’s class collected 2301
7916

of the box tops.     

The amount for Mrs. Johnson’s class is �2301
7916

�600 ≈ 174.41 

Mr. Handlos’ class collected 1855
7916

of the box tops.   

The amount for Mr. Handlos’ class is �1855
7916

�600 ≈ 140.60 

$284.99 should go to Mrs. Molt’s class, $174.41 should go to Mrs. Johnson’s class, and $140.60 should go to Mr. 
Handlos’ class. 
 
Instructional Strategies:  See 7.NS. 1-2 
See Also: Number Systems (Grade 6-8) and Number High School 
 
Illustrative Mathematics tasks:  

• “Sharing Prize Money”:  
 
For detailed information, see Progressions for the Common Core State Standards in Mathematics:  Number System 6-8. 
  

https://www.illustrativemathematics.org/
http://www.illustrativemathematics.org/illustrations/298
http://commoncoretools.me/wp-content/uploads/2013/07/ccssm_progression_NS+Number_2013-07-09.pdf
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Domain: Expressions and Equations (EE) 
Cluster:   Use properties of operations to generate equivalent expressions. 
 
Standard: Grade 7.EE.1  
Apply properties of operations as strategies to add, subtract, factor, and expand linear expressions with integer 
coefficients. For example: apply the distributive property to the expression 24𝑥𝑥 + 18𝑦𝑦 to produce the equivalent 
expression 6(4𝑥𝑥 + 3𝑦𝑦). (7.EE.1) 
 
Suggested Standards for Mathematical Practice (MP): 
 MP.2 Reason abstractly and quantitatively.                              
 MP.6 Attend to precision. 
 MP.7 Look for and make use of structure 

 
Connections:   See 7.EE.1-2 
This cluster is connected to: 

• Grade 7 Critical Area of Focus #2:  Developing understanding of operations with rational numbers and 
working with expressions and linear equations.  

• 6.EE.3-4 Students used properties of operations to write equivalent expressions.  
• The concepts in this cluster build from Operations and Algebraic Thinking -write and interpret numerical 

expressions from Grade 5 and provides the foundation for equation work in Grade 8.   
• It also assists in building the foundational work for writing equivalent non-linear expressions in the High School 

Conceptual Category - Algebra. 
 
Explanations and Examples:   
This is a continuation of work from 6th grade using properties of operations and combining like terms.  Students apply 
properties of operations and work with rational numbers (integers and positive / negative fractions and decimals) to 
write equivalent expressions. 
 
Examples: 
Write an equivalent expression for 3(𝑥𝑥 + 5) − 2. 
 
Suzanne thinks the two expressions 2(3𝑟𝑟 − 2) + 4𝑟𝑟 and 10𝑟𝑟 − 2 are equivalent?  Is she correct?  
Explain why or why not?  
 
Write equivalent expressions for:  3𝑟𝑟 + 12.  
 
Possible solutions might include factoring as in 3(𝑟𝑟 + 4), or other expressions such as 𝑟𝑟 + 2𝑟𝑟 + 7 + 5. 

• A rectangle is twice as long as wide.  One way to write an expression to find the perimeter would be 

.  Write the expression in two other ways.  
 
Solution: 6𝑤𝑤 or 2(𝑤𝑤) + 2(2𝑤𝑤). 
 
  

wwww 22 +++
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An equilateral triangle has a perimeter of 6𝑥𝑥 + 15.  What is the length of each of the sides of the triangle?  
 
Solution:  3(2𝑥𝑥 + 5), therefore each side is 2𝑥𝑥 + 5 units long. 
 
For numbers 1a–1e, select Yes or No to indicate whether each of these expressions is equivalent to 2(2𝑥𝑥 + 1). 
 

1a. 4𝑥𝑥 + 2 Yes No 

1b. 2(1 + 2𝑥𝑥) Yes No 

1c. 2(2𝑥𝑥) + 1 Yes No 

1d. 2𝑥𝑥 + 1 + 2𝑥𝑥 + 1 Yes No 

1e. 𝑥𝑥 + 𝑥𝑥 + 𝑥𝑥 + 𝑥𝑥 + 1 + 1 Yes No 
 
Solution: 
1a. Y - Equivalent by distributive property 
1b. Y - Equivalent by commutative property 
1c. N - Not equivalent by misapplying distributive property 
1d. Y - Equivalent by understanding 2 as a factor 
1e. Y - Equivalent by understanding 2 as a factor and distributive property 2𝑥𝑥 = (𝑥𝑥 + 𝑥𝑥) 
 
Instructional Strategies:   
Have students build on their understanding of order of operations and use the properties of operations to rewrite 
equivalent numerical expressions that were developed in Grade 6.  Students continue to use properties that were 
initially used with whole numbers and now develop the understanding that properties hold for integers, rational and 
real numbers. 
 
Provide opportunities to build upon this experience of writing expressions using variables to represent situations and 
use the properties of operations to generate equivalent expressions. These expressions may look different and use 
different numbers, but the values of the expressions are the same. 
 
One method that students can use to become convinced that expressions are equivalent is by substituting a numerical 
value for the variable and evaluating the expression.  For example  5(3 + 2𝑥𝑥)is equal to 5 ⋅ 3 + 5 ⋅ 2𝑥𝑥 𝐿𝐿𝑖𝑖𝑡𝑡 𝑥𝑥 = 6 and 
substitute 6 for x in both equations. 
 
 
 
Another method students can use to become convinced that expressions are equivalent is to justify each step of 
simplification of an expression with an operation property.  These include: the commutative, associative, identity, and 
inverse properties of addition and of multiplication, and the zero property of multiplication.        
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 Major Clusters  Supporting Clusters  Additional Clusters 

Tools/Resources: 
For detailed information, see Learning Progressions for Expressions and Equations. 
 
Illustrative Mathematics Grade 7 tasks: Scroll to the appropriate section to find named tasks. 

• 7.EE.A 
• Miles to Kilometers 
o Equivalent Expressions? 

• 7.EE.A.1 
• Writing Expressions 

 
 
Common Misconceptions: 
As students begin to build and work with expressions containing more than two operations, students tend to set aside 
the order of operations.   
 
For example, having a student simplify an expression like 8 + 4(2x - 5) + 3x can bring to light several misconceptions.  

• Do the students immediately add the 8 and 4 before distributing the 4?    
• Do they only multiply the 4 and the 2x and not distribute the 4 to both terms in the parenthesis?  
• Do they collect all like terms 8 + 4 – 5, and 2x + 3x?  

 
Each of these show gaps in students’ understanding of how to simplify numerical expressions with multiple operations. 
  

http://commoncoretools.files.wordpress.com/2011/04/ccss_progression_ee_2011_04_25.pdf
https://tasks.illustrativemathematics.org/7
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 Major Clusters  Supporting Clusters  Additional Clusters 

Domain: Expressions and Equations (EE) 
Cluster:  Use properties of operations to generate equivalent expressions. 
 
Standard:  Grade 7.EE.2       
Understand that rewriting an expression in different forms in a problem context can shed light on the problem and how 
the quantities in it are related.   For example, a + 0.05a = 1.05a means that “increase by 5%” is the same as “multiply by 
1.05.” (7.EE.2) 
 
Suggested Standards for Mathematical Practice (MP): 
 MP.2 Reason abstractly and quantitatively. 
 MP.6 Attend to precision.   
 MP.7 Look for and make use of structure. 

 
Connections:    See 7.EE.1  
 
Explanations and Examples:   
Students understand the reason for rewriting an expression in terms of a contextual situation.  For example, students 
understand that a 20% discount is the same as finding 80% of the cost (.80c). 
 
All varieties of a brand of cookies are $3.50.  A person buys 2 peanut butter, 3 sugar and 1 chocolate.  Instead of 
multiplying 2 × $3.50 to get the cost of the peanut butter cookies, 3 × $3.50to get the cost of the sugar cookies and  
1 × $3.50 for the chocolate cookies and then adding those totals together.  Students recognize that multiplying $3.50 
times 6 will give the same total. 
 
Examples: 
Jamie and Ted both get paid an equal hourly wage of $9 per hour. This week, Ted made an additional $27 dollars in 
overtime. Write an expression that represents the weekly wages of both if J = the number of hours that Jamie worked 
this week and T = the number of hours Ted worked this week? Can you write the expression in another way? 
 
Students may create several different expressions depending upon how they group the quantities in the problem.  
Possible student responses: 

o To find the total wage, I would first multiply the number of hours Jamie worked by 9.  Then I would multiply 
the number of hours Ted worked by 9. I would add these two values with the $27 overtime to find the total 
wages for the week.  The student would write the expression 9𝐽𝐽 + 9𝑇𝑇 + 27.  

o To find the total wages, I would add the number of hours that Ted and Jamie worked. I would multiply the 
total number of hours worked by 9. I would then add the overtime to that value to get the total wages for the 
week.  The student would write the expression 9(𝐽𝐽 + 𝑇𝑇) + 27. 

o To find the total wages, I would need to figure out how much Jamie made and add that to how much Ted 
made for the week. To figure out Jamie’s wages, I would multiply the number of hours she worked by 9. To 
figure out Ted’s wages, I would multiply the number of hours he worked by 9 and then add the $27 he earned 
in overtime. My final step would be to add Jamie and Ted wages for the week to find their combined total 
wages. The student would write the expression (9𝐽𝐽) + (9𝑇𝑇 + 27). 
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 Major Clusters  Supporting Clusters  Additional Clusters 

Given a square pool as shown in the picture, write four different expressions to find the total number of tiles in the 
border.  Explain how each of the expressions relates to the diagram and demonstrate that the expressions are 
equivalent.   
 
Which expression do you think is most useful?   Explain your thinking. 

 

 

 
 
 
 
Instructional Strategies:  7.EE.3; (See 7.EE.1) 
Provide opportunities for students to experience expressions for amounts of increase and decrease. In Standard 2, the 
expression is rewritten and the variable has a different coefficient.  In context, the coefficient aids in the understanding 
of the situation.  Another example is this situation which represents a 10% decrease: 𝑛𝑛 − 0.10𝑛𝑛 = 1.00𝑛𝑛 − 0.10𝑛𝑛 which 
equals 0.90𝑛𝑛 𝑒𝑒𝑝𝑝 90% of the amount. 
 
Resources/Tools: 
Illustrative Mathematics Grade 7 tasks: Scroll to the appropriate section to find named tasks. 

• 7.EE.A.2 
o Ticket to Ride 

 
Common Misconceptions:  See 7.EE.1 
  

https://tasks.illustrativemathematics.org/7
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 Major Clusters  Supporting Clusters  Additional Clusters 

Domain: Expressions and Equations (EE) 
Cluster:    Solve real-life and mathematical problems using numerical and algebraic expressions and 
equations. 
 
Standard:  Grade 7.EE.3     
Solve multi-step real-life and mathematical problems with rational numbers. Apply properties of operations to calculate 
with numbers in any form; convert between forms as appropriate; and assess the reasonableness of answers using 
mental computation and estimation strategies. For example: If a woman making $25 an hour gets a 10% raise, she will 

make an additional 
1
10

 of her salary an hour, or $2.50, for a new salary of $27.50. (7.EE.3) 

 
Suggested Standards for Mathematical Practice (MP): 
 MP.1 Make sense of problems and persevere in solving them. 
 MP.2 Reason abstractly and quantitatively. 
 MP.3 Construct viable arguments and critique the reasoning of others. 
 MP.4 Model with mathematics. 
 MP.5 Use appropriate tools strategically. 
 MP.6 Attend to precision. 
 MP.7 Look for and make use of structure. 
 MP.8 Look for and express regularity in repeated reasoning. 

 
Connections: 
This cluster is connected to: 

• Grade 7 Critical Area of Focus #2:  Developing understanding of operations with rational numbers and 
working with expressions and linear equations 

•  Critical Area of Focus #3:  solving problems involving scale drawings and informal geometric constructions, 
and working with two- and three-dimensional shapes to solve problems involving area, surface area, and 
volume. 

• 7.NS.3- This standards connect naturally with the work done solving real-world and mathematical problems 
involving the four operations.  

 
Explanations and Examples: 
Students solve contextual problems using rational numbers. Students convert between fractions, decimals, 
and percents as needed to solve the problem.  Students use estimation to justify the reasonableness of answers. 
 
Estimation strategies for calculations with fractions and decimals extend from students’ work with whole number 
operations.   
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 Major Clusters  Supporting Clusters  Additional Clusters 

Estimation strategies include, but are not limited to: 
• front-end estimation with adjusting (using the highest place value and estimating from the front end 

making adjustments to the estimate by taking into account the remaining amounts), 
• clustering around an average (when the values are close together an average value is selected and 

multiplied by the number of values to determine an estimate), 
• rounding and adjusting (students round down or round up and then adjust their estimate depending 

on how much the rounding affected the original values), 
• using friendly or compatible numbers such as factors (students seek to fit numbers together - i.e., 

rounding to factors and grouping numbers together that have round sums like 100 or 1000),  
• using benchmark numbers that are easy to compute (student’s select close whole numbers for 

fractions or decimals to determine an estimate). 
 
Examples: 
The youth group is going on a trip to the state fair.  The trip costs $52. Included in that price is $11 for a concert ticket 
and the cost of 2 passes, one for the rides and one for the game booths.  
 
Each of the passes cost the same price.  Write an equation representing the cost of the trip and determine the price of 
one pass. 

x x 11 2𝑥𝑥 + 11 = 52 

52 
2𝑥𝑥 = 41 

𝑥𝑥 = $20.50 
 
Renee, Susan, and Martha will share the cost to rent a vacation house for a week. 

• Renee will pay 40% of the cost. 
• Susan will pay 0.35 of the cost. 
• Martha will pay the remainder of the cost. 

Part A 

Martha thinks she will pay 1
3
 of the cost.  Is Martha correct? 

Use mathematics to justify your answer. 
 
Part B 
The cost to rent a vacation house for a week is $850.  How much will Renee, Susan, and Martha each pay to rent this 
house for a week? 
 
Sample Response: 

Part A:  Martha is incorrect. She will pay 𝟏𝟏
𝟒𝟒
 of the cost. 

1 − (40% + 0.35) 
1 − (0.40 + 0.35) 

1 − 0.75 = 0.25 =
25

100
=

1
4

 

Part B 
Renee:  0.40 × $850 = $340 
Susan:  0.35 × $850 = $297.50 
Martha:  0.25 × $850 = $212.50 
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 Major Clusters  Supporting Clusters  Additional Clusters 

When working on a report for class, Catrina read that a woman over the age of 40 can lose approximately 0.06 
centimeters of height per year. 

a. Catrina's aunt Nancy is 40 years old and is 5 feet 7 inches tall.  Assuming her height decreases at this rate after 
the age of 40, about how tall will she be at age 65?  (Remember that 1 inch = 2.54 centimeters.)  

b. Catrina's 90-year-old grandmother is 5 feet 1 inch tall.  Assuming her grandmother's height has also decreased 
at this rate, about how tall was she at age 40?  Explain your reasoning.  

 
Solution:  
Convert the rate of shrinkage to inches per year.   
Note that there is a significant amount of rounding in the final answer.  This is because people almost never report their 
heights more precisely than the closest half-inch.  If we assume that the heights reported in the task stem are rounded 
to the nearest half-inch, then we should report the heights given in the solution at the same level of precision. 
 
If a person loses an average of 0.06 cm per year after age 40 and 1 𝑖𝑖𝑝𝑝𝑝𝑝ℎ = 2.54 𝑝𝑝𝑡𝑡, after age 40 they lose, on average 
0.06 ÷ 2.54 = 0.024 𝑖𝑖𝑝𝑝𝑝𝑝ℎ𝑖𝑖𝑖𝑖 𝑝𝑝𝑖𝑖𝑝𝑝 𝑦𝑦𝑖𝑖𝑟𝑟𝑝𝑝.  
 

a. In the 25 years from age 40 to age 65, Nancy could be expected to lose approximately 25 × 0.024 = 0.6 𝑖𝑖𝑝𝑝𝑝𝑝ℎ𝑖𝑖𝑖𝑖.  
Subtracting this from Nancy's current height, Nancy's height at age 65 could be expected to be approximately 

5 𝑓𝑓𝑖𝑖𝑖𝑖𝑡𝑡, 6 1
2

 𝑖𝑖𝑝𝑝𝑝𝑝ℎ𝑖𝑖𝑖𝑖. 

b. In the 55 years from age 40 to age 90, Catrina's grandmother could be expected to lose approximately twice 
Nancy's loss in height, or 1.2 inches.  Adding this to Catrina's grandmother's current height, Catrina's 
grandmother could be expected to have been approximately 5 feet, 2 inches tall at age 40. 

 
Instructional Strategies: 
To assist students’ assessment of the reasonableness of answers, especially problem situations involving fractional or 
decimal numbers, use whole-number approximations for the computation and then compare to the actual computation. 
Connections between performing the inverse operation and undoing the operations are appropriate here. It is 
appropriate to expect students to show the steps in their work. Students should be able to explain their thinking using 
the correct terminology for the properties and operations. 
 
Continue to build on students’ understanding and application of writing and solving one-step equations from a problem 
situation to multi-step problem situations.  This is also the context for students to practice using rational numbers 
including: integers, and positive and negative fractions and decimals.  As students analyze a situation, they need to 
identify what operation should be completed first, then the values for that computation. Each set of the needed 
operation and values is determined in order.  Finally an equation matching the order of operations is written.  For 
example, Bonnie goes out to eat and buys a meal that costs $12.50 that includes a tax of $0.75.  She only wants to leave 
a tip based on the cost of the food. In this situation, students need to realize that the tax must be subtracted from the 
total cost before being multiplied by the percent of tip and then added back to obtain the final cost.  
𝐶𝐶 = (12.50− 0.75)(1 + 𝑇𝑇) + 0.75 = 11.75(1 + 𝑇𝑇) + 0.75 where C = cost and T = tip. 
 
Provide multiple opportunities for students to work with multi-step problem situations that have multiple solutions and 
therefore can be represented by an inequality.  Students need to be aware that values can satisfy an inequality but not 
be appropriate for the situation, therefore limiting the solutions for that particular problem.   
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 Major Clusters  Supporting Clusters  Additional Clusters 

Tools/ Resources:  
Illustrative Mathematics Grade 7 tasks: Scroll to the appropriate section to find named tasks. 

• 7.EE.B.3 
o Shrinking 
o Discounted Books 
o Gotham City Taxis 
o Anna in D.C. 
o Who is the better batter? 
o Stained Glass 

 
 
Common Misconceptions: 
As students begin to build and work with expressions containing more than two operations, students tend to set aside 
the order of operations.   
 
For example having a student simplify an expression like 8 + 4(2𝑥𝑥 − 5) can bring to light several misconceptions.  

• Do the students immediately add the 8 and 4 before distributing the 4?    
• Do they only multiply the 4 and the 2x and not distribute the 4 to both terms in the parenthesis?  
• Do they collect all like terms 8 + 4 − 5, and 2𝑥𝑥 + 3𝑥𝑥?  

 
Each of these show gaps in students’ understanding of how to simplify numerical expressions with multiple operations. 
  

https://tasks.illustrativemathematics.org/7
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 Major Clusters  Supporting Clusters  Additional Clusters 

Domain: Expressions and Equations (EE) 
Cluster:  Solve real-life and mathematical problems using numerical and algebraic expressions and 
equations. 
 
Standard:  Grade 7.EE.4  
Use variables to represent quantities in a real-world or mathematical problem, and construct two-step equations and 
inequalities to solve problems by reasoning about the quantities. 

7.EE.4a. Solve word problems leading to equations of the form 𝑝𝑝𝑥𝑥 + 𝑞𝑞 = 𝑝𝑝, and 𝑝𝑝(𝑥𝑥 + 𝑞𝑞) = 𝑝𝑝 where p, q, and r 
are specific rational numbers. Solve equations of these forms fluently (efficiently, accurately, and 
flexibly). Compare an algebraic solution to an arithmetic solution, identifying the sequence of the 
operations used in each approach. For example, the perimeter of a rectangle is 54 cm. Its length is 6 cm. 
What is its width? (7.EE.4a) 

7.EE.4b. Solve word problems leading to inequalities of the form 𝑝𝑝𝑥𝑥 + 𝑞𝑞 > 𝑝𝑝  or  
𝑝𝑝𝑥𝑥 + 𝑞𝑞 < 𝑝𝑝 where p, q, and r are specific rational numbers and 𝑝𝑝 > 0. Graph the solution set of the 
inequality and interpret it in the context of the problem. For example: As a salesperson, you are paid $50 
per week plus $3 per sale. This week you want your pay to be at least $100. Write an inequality for the 
number of sales you need to make, and describe the solutions. (7.EE.4b) 

 
Suggested Standards for Mathematical Practice (MP): 
 MP.1 Make sense of problems and persevere in solving them. 
 MP.2 Reason abstractly and quantitatively. 
 MP.3 Construct viable arguments and critique the reasoning of others. 
 MP.4 Model with mathematics. 
 MP.5 Use appropriate tools strategically. 
 MP.6 Attend to precision. 
 MP.7 Look for and make use of structure. 
 MP.8 Look for and express regularity in repeated reasoning. 

 
Connections:    See 7.EE.3 
 
Explanations and Examples: 
Students solve multi-step equations and inequalities derived from word problems.  Students use the arithmetic from the 
problem to generalize an algebraic solution.  Students graph inequalities and make sense of the inequality in context.  
Inequalities may have negative coefficients.  Problems can be used to find a maximum or minimum value when in 
context. 
 
Examples: 
Amie had $26 dollars to spend on school supplies. After buying 10 pens, she had $14.30 left.  
How much did each pen cost? 
 
The sum of three consecutive even numbers is 48. What is the smallest of these numbers? 
 

Solve:    
205

4
5

=+n

http://community.ksde.org/Portals/54/Documents/Standards/Standards_Review/Linked_Files/FLUENCY_IS_MORE_THAN_MERE_SPEED.pdf
http://community.ksde.org/Portals/54/Documents/Standards/Standards_Review/Linked_Files/FLUENCY_IS_MORE_THAN_MERE_SPEED.pdf
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 Major Clusters  Supporting Clusters  Additional Clusters 

 
Florencia has at most $60 to spend on clothes.  She wants to buy a pair of jeans for $22 dollars and spend the rest on t-
shirts.  Each t-shirt costs $8.  Write an inequality for the number of t-shirts she can purchase. 
 
Steven has $25 dollars. He spent $10.81, including tax, to buy a new DVD. He needs to set aside $10.00 to pay for his 
lunch next week. If peanuts cost $0.38 per package including tax, what is the maximum number of packages that Steven 
can buy?  
 
Write an equation or inequality to model the situation.  Explain how you determined whether to write an equation or 
inequality and the properties of the real number system that you used to find a solution. 

• Solve  1
2
𝑥𝑥 + 3 > 2 and graph your solution on a number line. 

 
Fishing Adventures rents small fishing boats to tourists for day-long fishing trips. Each boat can only carry 1200 pounds 
of people and gear for safety reasons. Assume the average weight of a person is 150 pounds. Each group will require 200 
lbs. of gear for the boat plus 10 lbs. of gear for each person. 

a.   Create an inequality describing the restrictions on the number of people possible in a rented boat.  Graph the 
solution set. 

b.   Several groups of people wish to rent a boat.  Group 1 has 4 people.  Group 2 has 5 people.  Group 3 has 8 
people.  Which of the groups, if any, can safely rent a boat?  What is the maximum number of people that may 
rent a boat?  

 
Sample Solution: 

a. Let p be the number of people in a group that wishes to rent a boat.  Then 150p represents the total weight of 
the people in the boat, in pounds.  Also, 10p represents the weight of the gear that is needed for each person on 
the boat.  So the total weight in the boat that is contributed solely by the people is  150𝑝𝑝 + 10𝑝𝑝 = 160𝑝𝑝. 

 
Because each group requires 200 pounds of gear regardless of how many people there are, we add this to the 
above amount.  We also know that the total weight cannot exceed 1,200 pounds.  
So we arrive at the following inequality:  160𝑝𝑝 + 200 < 1200 
 
One possible graph illustrating the solutions is shown below.  We observe that our solutions are values of p 
listed below the number line and shown by the dots, so that the corresponding weights 160p+200, listed above 
the line, are below the limit of 1200 lbs. 
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 Major Clusters  Supporting Clusters  Additional Clusters 

b. We can find out which of the groups, if any, can safely rent a boat by substituting the number of people in each 
group for p in our inequality.  We see that: 

 
For Group 1:  160(4) + 200 = 840 < 1200 
For Group 2:  160(5) + 200 = 1000 < 1200 
For Group 3:  160(8) + 200 = 1480 < 1200 

 
We find that both Group 1 and Group 2 can safely rent a boat, but that Group 3 exceeds the weight limit, and so cannot 
rent a boat.  To find the maximum number of people that may rent a boat, we solve our inequality for p. 
 

160𝑝𝑝 + 200 < 1200 
160𝑝𝑝 < 100 
𝑝𝑝 < 6.25 

 
As we cannot have 0.25 person, we see that 6 is the largest number of people that may rent a boat at once. This also 
matches our graph; since only integer values of p make sense, 6 is the largest value of p whose corresponding weight 
value lies below the limit of 1200 lbs. 
 
Instructional Strategies: 
Continue to build on students’ understanding and application of writing and solving one-step equations from a problem 
situation to multi-step problem situations.  This is also the context for students to practice using rational numbers 
including: integers, and positive and negative fractions and decimals.  As students analyze a situation, they need to 
identify what operation should be completed first, then the values for that computation. Each set of the needed 
operation and values is determined in order.  Finally an equation matching the order of operations is written.  For 
example, Bonnie goes out to eat and buys a meal that costs $12.50 that includes a tax of $.75.  She only wants to leave a 
tip based on the cost of the food. In this situation, students need to realize that the tax must be subtracted from the 
total cost before being multiplied by the percent of tip and then added back to obtain the final cost.  
𝐶𝐶 = (12.50− 0.75)(1 + 𝑇𝑇) + 0.75 = 11.75(1 + 𝑇𝑇) + 0.75 where C = cost and T = tip. 
 
Provide multiple opportunities for students to work with multi-step problem situations that have multiple solutions and 
therefore can be represented by an inequality.  Students need to be aware that values can satisfy an inequality but not 
be appropriate for the situation, therefore limiting the solutions for that particular problem.   
 
Tools/ Resources:      
See engageNY Modules.  
 
Illustrative Mathematics Grade 7 tasks: Scroll to the appropriate section to find named tasks. 

• 7.EE.B.4 
o Fishing Adventures 2 
o Gotham City Taxis 
o Bookstore Account 

• 7.EE.B.4.b 
• Sports Equipment Set 

 
Common Misconceptions:  See 7.EE.3  

https://www.engageny.org/resource/grade-7-mathematics
https://tasks.illustrativemathematics.org/7
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 Major Clusters  Supporting Clusters  Additional Clusters 

Domain: Geometry (G) 
 Cluster:   Draw, construct, and describe geometrical figures and describe the relationships between them. 
 
Standard:  Grade 7.G.1  
Solve problems involving scale drawings of geometric figures, such as computing actual lengths and areas from a scale 
drawing and reproducing a scale drawing at a different scale. (7.G.1) 
 
Suggested Standards for Mathematical Practice (MP): 
 MP.1 Make sense of problems and persevere in solving them. 
 MP.2 Reason abstractly and quantitatively. 
 MP.3 Construct viable arguments and critique the reasoning of others. 
 MP.4 Model with mathematics. 
 MP.5 Use appropriate tools strategically. 
 MP.6 Attend to precision. 
 MP.7 Look for and make use of structure. 
 MP.8 Look for and express regularity in repeated reasoning. 

 
Connections: 
This cluster is connected to: 

•  Grade 7 Critical Area of Focus #3:   Solving problems involving scale drawings and informal geometric 
constructions, and working with two dimensional shapes to solve problems involving area, surface area, and 
volume.   

• Connections should be made between this cluster and the  Grade 7 Geometry Solve real-life and 
mathematical problems involving angle measure, area, surface area, and volume. ( Grade 7.G.4-6) 

•  Grade 7 Ratios and Proportional Relationships. 
 
This cluster leads to the development of the triangle congruence criteria in Grade 8. 
 
Explanations and Examples:  
Students determine the dimensions of figures when given a scale and identify the impact of a scale on actual length 
(one-dimension) and area (two-dimensions).  Students identify the scale factor given two figures.  Using a given scale 
drawing, students reproduce the drawing at a different scale.   Students understand that the lengths will change by a 
factor equal to the product of the magnitude of the two size transformations. 
 
Examples:   
Julie showed you the scale drawing of her room.  If each 2 cm on the scale drawing equals 5 ft., what are the actual 
dimensions of Julie’s room?  Reproduce the drawing at 3 times its current size. 
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A company designed two rectangular maps of the same region.  These maps are described below. 

• Map 1:  The dimensions are 8 inches by 10 inches.  The scale is 3
4
 mile to 1 inch. 

• Map 2:  The dimensions are 4 inches by 5 inches. 
 
Write a ratio that represents the scale on Map 2. 
 
Solution:   

3
4

 𝑡𝑡𝑖𝑖𝑝𝑝𝑖𝑖 𝑡𝑡𝑒𝑒 
1
2

 𝑖𝑖𝑝𝑝𝑝𝑝ℎ 

 
Instructional Strategies:  
This cluster focuses on the importance of visualization in the understanding of Geometry.  Being able to visualize and 
then represent geometric figures on paper is essential to solving geometric problems. 
 
Scale drawings of geometric figures connect understandings of proportionality to geometry and lead to future work in 
similarity and congruence.  As an introduction to scale drawings in geometry, students should be given the opportunity 
to explore scale factor as the number of time you multiple the measure of one object to obtain the measure of a similar 
object.  It is important that students first experience this concept concretely progressing to abstract contextual 
situations. Pattern blocks (not the hexagon) provide a convenient means of developing the foundation of scale.  
Choosing one of the pattern blocks as an original shape, students can then create the next-size shape using only those 
same-shaped blocks. Questions about the relationship of the original block to the created shape should be asked and 
recorded. A sample of a recording sheet is shown. 
 

Shape Original Side Length Created Side Length Scale Relationship of Created to Original 

Square 1 unit   

Triangle 1 unit   

Rhombus 1 unit   

 
This can be repeated for multiple iterations of each shape by comparing each side length to the original’s side length.  
An extension would be for students to compare the later iterations to the previous.  Students should also be expected to 
use side lengths equal to fractional and decimal parts.  For example, if the original side can be stated to represent 2.5 
inches, what would be the new lengths and what would be the scale? 
 
 
 
 
 
 
 
Provide opportunities for students to use scale drawings of geometric figures with a given scale that requires them to 
draw and label the dimensions of the new shape.  Initially, measurements should be in whole numbers, progressing to 
measurements expressed with rational numbers.  This will challenge students to apply their understanding of fractions 
and decimals. 

Shape Original Side Length Created Side Length Scale Relationship of Created to Original 

Square 2.5 inches   
Parallelogram 3.25 centimeters    

Trapezoid (Actual measurements) 
Length 1 
Length 2 
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After students have explored multiple iterations with a couple of shapes, ask them to choose and replicate a shape with 
given scales to find the new side lengths, as well as both the perimeters and areas.  Starting with simple shapes and 
whole-number side lengths allows all students access to discover and understand the relationships.  An interesting 
discovery is the relationship of the scale of the side lengths to the scale of the respective perimeters (same scale) and 
areas (scale squared).  A sample recording sheet is shown. 
 

Shape 
Side 

Length 
Scale 

Original 
Perimeter 

Scaled 
Perimeter 

Perimeter 
Scale 

Original 
Area 

Scaled 
Area 

Area 
Scale 

Rectangle 2 x 3 in. 2 10 inches 20 inches 2 6 sq. in. 24 sq. in. 4 
Triangle 1.5 inches 2 4.5 inches 9 inches 2 2.25 sq. in. 9 sq. in. 4 

 
Students should move on to drawing scaled figures on grid paper with proper figure labels, scale and dimensions.  
Provide word problems that require finding missing side lengths, perimeters or areas.  For example, if a 4 by 4.5 cm 
rectangle is enlarged by a scale of 3, what will be the new perimeter?  
 
What is the new area? or If the scale is 6, what will the new side length look like? or Suppose the area of one triangle is 
16 sq. units and the scale factor between this triangle and a new triangle is 2.5.  What is the area of the new triangle? 
 
Reading scales on maps and determining the actual distance (length) is an appropriate contextual situation. 
 
Constructions facilitate understanding of geometry.  Provide opportunities for students to physically construct triangles 
with straws, sticks, or geometry apps prior to using rulers and protractors to discover and justify the side and angle 
conditions that will form triangles. 
 
Explorations should involve giving students: three side measures, three angle measures, two side measures and an 
included angle measure, and two angles and an included side measure to determine if a unique triangle, no triangle or 
an infinite set of triangles results.  Through discussion of their exploration results, students should conclude that 
triangles cannot be formed by any three arbitrary side or angle measures.  They may realize that for a triangle to result 
the sum of any two side lengths must be greater than the third side length, or the sum of the three angles must equal 
180 degrees.  Students should be able to transfer from these explorations to reviewing measures of three side lengths or 
three angle measures and determining if they are from a triangle justifying their conclusions with both sketches and 
reasoning. 
 
Further construction work can be replicated with quadrilaterals, determining the angle sum, noticing the variety of 
polygons that can be created with the same side lengths but different angle measures, and ultimately generalizing a 
method for finding the angle sums for regular polygons and the measures of individual angles.  
 
For example, subdividing a polygon into triangles using a vertex (N-2)180° or subdividing polygons into triangles using an 
interior point 180∘𝑁𝑁 − 360∘ where 𝑁𝑁 = 𝑡𝑡ℎ𝑖𝑖 𝑝𝑝𝑦𝑦𝑡𝑡𝑛𝑛𝑖𝑖𝑝𝑝 𝑒𝑒𝑓𝑓 𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖 𝑖𝑖𝑝𝑝 𝑡𝑡ℎ𝑖𝑖 𝑝𝑝𝑒𝑒𝑝𝑝𝑦𝑦𝑔𝑔𝑒𝑒𝑝𝑝. An extension would be to realize that 
the two equations are equal. 
 
Slicing three-dimensional figures helps develop three-dimensional visualization skills. Students should have the 
opportunity to physically create some of the three-dimensional figures, slice them in different ways, and describe in 
pictures and words what has been found. For example, use clay to form a cube, then pull string through it in different 
angles and record the shape of the slices found.  Challenges can also be given: “See how many different two-dimensional 
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figures can be found by slicing a cube” or “What three-dimensional figure can produce a hexagon slice?”  This can be 
repeated with other three-dimensional figures using a chart to record and sketch the figure, slices and resulting two-
dimensional figures. 
 
Tools/Resources: 
See engageNY Modules.  
 
Illustrative Mathematics Grade 7 tasks: Scroll to the appropriate section to find named tasks. 

• 7.G.A.1 
o Floor Plan 
o Map distance 

 
 
Common Misconceptions: 
Students often confuse the vocabulary associated with this domain.  Teachers should provide experiences for the explicit 
discovery of these terms to apply meaning through written, pictorial, and experimental means.  They continue to misuse 
units for distance, area, and volume.  This too should be explicitly reviewed from the sixth grade domain. 
 
Student’s may have misconceptions about correctly setting up proportions, how to read a ruler, doubling side measures 
and does not double perimeter.   
 
  

https://www.engageny.org/resource/grade-7-mathematics
https://tasks.illustrativemathematics.org/7
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Domain: Geometry (G) 
Cluster:   Draw, construct, and describe geometrical figures and describe the relationships between them. 
 
Standard:  Grade 7.G.2    
Identify three-dimensional objects generated by rotating a two-dimensional (rectangular or triangular) object around 
one edge. (G.GMD.4) 
 
Suggested Standards for Mathematical Practice (MP): 
 MP.4 Model with mathematics. 
 MP.5 Use appropriate tools strategically.           
 MP.6 Attend to precision. 
 MP. 7 Look for and make use of structure. 
 MP.8 Look for and express regularity in repeated reasoning. 

 
Connections:  See 7.G.1 

• Building a three-dimensional object from a two-dimensional figure connects with 7.G.3, deconstructing 
a three-dimensional objection into a two-dimensional figure.  

 
Explanations and Examples:   
This standard supports the development of geometric thinking generally and, specifically, helps contribute meaning and 
vocabulary for the discussion of formulas related to cylinders (7th grade), cones (8th grade), and spheres (8th grade). 
Generally, “decomposing and rearranging provide a geometric way of both seeing that a measurement formula is the 
right one and seeing why it is the right one,” according to NCTM’s Developing Essential Understanding of Geometry in 
Grades 6-8. Additionally, this standard will strengthen the student’s mental imagery skills. There is a transition and 
development of imagery skills from elementary, where objects are concrete, to middle school, where students must 
learn to “see through drawn or concrete objects to the underlying geometric one. “Geometric awareness develops 
through practice in visualizing, diagramming, and constructing.”  
 
Beyond the general benefits that come from imagining the creation of a 3-dimensional object through rotation, this 
standard will help students understand the connection between the height and radius of a cylinder and the rectangle 
used to generate the cylinder. Once students are in 8th grade, they will be able to visualize the right triangle used to 
create the cone and connect the hypotenuse to the lateral edge. This connection does not need to be made in 7th grade 
but questions about where the legs and hypotenuse of the right triangle are in the cone will lay a foundation that will 
make surface area and volume formulas more understandable.  
 
  



57 

 Major Clusters  Supporting Clusters  Additional Clusters 

Examples: 
Match the solid that would result if you rotated the two-dimensional figure about the axis indicated.  

 
 

 

 

 

 

 

Can three-dimensional cube be created by rotating a two-dimensional shape? If so, what two-dimensional shape will 
create a cube? If not, why? Justify your answer.  
 
A square with an area of 81 𝑝𝑝𝑡𝑡2 is rotated to form a cylinder. What is the volume of the cylinder?  

 
 
 
 
 

Instructional Strategies:   

Constructions facilitate understanding of geometry.  Provide opportunities for students to physically handle three-
dimensional solids prior to using geometry apps.   
 
Resources/Tools: 
Videos of rotation can be found at http://www.schoolmath.jp/3d/e/student/lesson01/lesson_02.htm 

Khan Academy: 
• Course-Geometry 
• Unit- Solid Geometry 
• Topic- 2D vs. 3D Objects 
• Lesson- Rotating 2D Shapes in 3D 

 

  

1.   2.  3.  4.  5.  

a.  b.  c. d. e.  

http://www.schoolmath.jp/3d/e/student/lesson01/lesson_02.htm
https://www.khanacademy.org/
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Domain: Geometry (G) 
 Cluster:   Draw, construct, and describe geometrical figures and describe the relationships between them. 
 
Standard:  Grade 7.G.3   
Describe the two-dimensional figures that result from slicing three-dimensional figures, as in plane sections of right 
rectangular prisms and right cylinder. (G.GMD.4) 
 
Suggested Standards for Mathematical Practice (MP): 
 MP.1 Make sense of problems and persevere in solving them. 
 MP.2 Reason abstractly and quantitatively. 
 MP.3 Construct viable arguments and critique the reasoning of others. 
 MP.4 Model with mathematics. 
 MP.5 Use appropriate tools strategically. 
 MP.6 Attend to precision. 
 MP.7 Look for and make use of structure. 
 MP.8 Look for and express regularity in repeated reasoning. 

 
Connections:  See 7.G.1 
 
Explanations and Examples:   
Mathematically proficient students communicate precisely by engaging in discussion about their reasoning using 
appropriate mathematical language. The terms students should learn to use with increasing precision with this cluster 
are: scale drawing, dimensions, scale factor, plane sections, right rectangular prism, right cylinder, parallel, and 
perpendicular. 
 
Students need to describe the resulting face shape from cuts made parallel and perpendicular to the bases of right 
rectangular prisms and cylinders.  Cuts made parallel will take the shape of the base; cuts made perpendicular will take 
the shape of the lateral (side) face.  Cuts made at an angle through the right rectangular prism will produce a 
parallelogram; cuts made at an angle through the right cylinder will also produce an ellipse.  
 
Examples: 
For each of the figures below, sketch a solid that could have the given cross sections. 
 
1.   Cross section parallel to a base: Cross section perpendicular to a base: 
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2.   Cross section parallel to a base: Cross section perpendicular to a base: 
 

   
 

 

3. Determine the two-dimensional shape that would be created if the three-dimensional shape were sliced as 
shown.  

 
 
 

 

 

 

 

 

Instructional Strategies:   

This cluster focuses on the importance of visualization in the understanding of Geometry.  Being able to visualize and 
then represent geometric figures on paper is essential to solving geometry problems. 
 
Slicing three-dimensional figures helps develop three-dimensional visualization skills.  Students should have the 
opportunity to physically create some of the three-dimensional figures, slice them in different ways, and describe in 
pictures and words what has been found.  For example, use clay to form a cube, then pull string through it in different 
angles and record the shape of the slices found.   
 
Challenges can also be given: “See how many different two-dimensional figures can be found by slicing a cube” or “What 
three-dimensional figure can produce a hexagon slice?”  This can be repeated with other three-dimensional figures using 
a chart to record and sketch the figure, slices and resulting two-dimensional figures. 
 
 
Resources/Tools: 
Illustrative Mathematics Grade 7 tasks: Scroll to the appropriate section to find named tasks. 

• 7.G.A.3 
o Cube Ninjas! 

  

https://tasks.illustrativemathematics.org/7
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Domain: Geometry (G) 
 Cluster:  Solve real-life and mathematical problems involving area, surface area, and volume. 
 
Standard:  Grade 7.G.4    
Use the formulas for the area and circumference of a circle and solve problems; give an informal derivation of the 
relationship between the circumference and area of a circle. (7.G.4) 
 
Suggested Standards for Mathematical Practice (MP): 
 MP.1 Make sense of problems and persevere in solving them. 
 MP.2 Reason abstractly and quantitatively. 
 MP.3 Construct viable arguments and critique the reasoning of others. 
 MP.4 Model with mathematics. 
 MP.5 Use appropriate tools strategically. 
 MP.6 Attend to precision. 
 MP.7 Look for and make use of structure. 
 MP.8 Look for and express regularity in repeated reasoning. 

 
Connections:   
This cluster is connected to: 

•  Grade 7 Critical Area of Focus #3:  Solving problems involving scale drawings and informal geometric 
constructions, and working with two- and three-dimensional shapes to solve problems involving area, surface 
area, and volume.  

• This cluster builds from understandings of Geometry and in Measurement and Data Grades 3-6.  
• It also utilizes the scope of the number system experienced thus far and begins the formal use of equations, 

formulas and variables in representing and solving mathematical situations. 
 
Explanations and Examples: 
Students understand the relationship between radius and diameter. Students also understand the ratio of circumference 
to diameter can be expressed as π. Building on these understandings, students generate the formulas for circumference 
and area. 
 
The illustration shows the relationship between the circumference and area. If a circle is cut into wedges and laid out as 
shown below, a parallelogram results.  Half of an end wedge can be moved to the other end a parallelogram results. The 

height of the parallelogram is the same as the radius of the circle. The base length is 1
2
 the circumference(2𝜋𝜋𝑝𝑝).  The 

area of the parallelogram (and therefore the circle) is found by the following calculations: 
 

    

𝐴𝐴𝑝𝑝𝑖𝑖𝑟𝑟 𝑒𝑒𝑓𝑓 𝑃𝑃𝑟𝑟𝑝𝑝𝑟𝑟𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑒𝑒𝑔𝑔𝑝𝑝𝑟𝑟𝑡𝑡 = 𝐵𝐵𝑟𝑟𝑖𝑖𝑖𝑖 × 𝐻𝐻𝑖𝑖𝑖𝑖𝑔𝑔ℎ𝑡𝑡 

𝐴𝐴𝑝𝑝𝑖𝑖𝑟𝑟 =
1
2

(2𝜋𝜋𝑝𝑝) × 𝑝𝑝 

𝐴𝐴𝑝𝑝𝑖𝑖𝑟𝑟 = 𝜋𝜋𝑝𝑝2 

 
 

http://mathworld.wolfram.com/Circle.html
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Explanations and Examples:  
Students solve problems (mathematical and real-world) including finding the area of left-over materials when circles are 
cut from squares and triangles or from cutting squares and triangles from circles.  “Know the formula” does not mean 
memorization of the formula.  To “know” means to have an understanding of why the formula works and how the 
formula relates to the measure (area and circumference) and the figure.  This should be an expectation for ALL students. 
 
Examples: 
The seventh grade class is building a mini golf game for the school carnival.  The end of the putting green will be a circle.  
If the circle is 10 feet in diameter, how many square feet of grass carpet will they need to buy to cover the circle?  How 
might you communicate this information to the salesperson to make sure you receive a piece of carpet that is the 
correct size? 
 
Students measure the circumference and diameter of several circular objects in the room (clock, trash can, door knob, 
wheel, etc.).  Students organize their information and discover the relationship between circumference and diameter by 
noticing the pattern in the ratio of the measures.  
 
Students write an expression that could be used to find the circumference of a circle with any diameter and check their 
expression on other circles. 
 
Students will use a circle as a model to make several equal parts as you would in a pie model.  The greater number the 
cuts, the better.  The pie pieces are laid out to form a shape similar to a parallelogram.  Students will then write an 
expression for the area of the parallelogram related to the radius (note: the length of the base of the parallelogram is 
half the circumference, or πr, and the height is r, resulting in an area of 
πr2.   
 
If students are given the circumference of a circle, could they write a 
formula to determine the circle’s area or given the area of a circle, could 
they write the formula for the circumference? 
 
An artist used silver wire to make a square that has a perimeter of 40 inches.  She then used copper wire to make the 
largest circle that could fin in the square, as shown below. 
 
 
 
 
 
 
How many more inches of silver wire did the artist use compared to cooper wire?  (Use π = 3.14) 
Show all work necessary to justify your response. 
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Sample Response: 

Each side of the square has a length of 40 × 1
4

= 10 inches. 

The radius of the circle is 10
2

= 5 inches, so the circumference of the circle is 2 × 𝜋𝜋 × 5 = 10 × 3.14 = 31.4 𝑖𝑖𝑝𝑝𝑝𝑝ℎ𝑖𝑖𝑖𝑖. 
The perimeter of the square minus the circumference of the circle is 40 − 31.4 = 8.6 𝑖𝑖𝑝𝑝𝑝𝑝ℎ𝑖𝑖𝑖𝑖. 
 
Instructional Strategies:   
This is the students’ initial work with circles.  Knowing that a circle is created by connecting all the points equidistant 
from a point (center) is essential to understanding the relationships between radius, diameter, circumference, pi and 
area.   
 
Students can observe this by folding a paper plate several times, finding the center at the intersection, then measuring 
the lengths between the center and several points on the circle, the radius.  Measuring the folds through the center, or 
diameters leads to the realization that a diameter is two times a radius.  
 
Given multiple-size circles, students should then explore the relationship between the radius and the length measure of 
the circle (circumference) finding an approximation of pi and ultimately deriving a formula for circumference.  String or 
yarn laid over the circle and compared to a ruler is an adequate estimate of the circumference.  This same process can 
be followed in finding the relationship between the diameter and the area of a circle by using grid paper to estimate the 
area. 
 
Another visual for understanding the area of a circle can be modeled by cutting up a paper plate into 16 pieces along 
diameters and reshaping the pieces into a parallelogram.  In figuring area of a circle, the squaring of the radius can also 
be explained by showing a circle inside a square.  Again, the formula is derived and then learned. After explorations, 
students should then solve problems, set in relevant contexts, using the formulas for area and circumference. 
 
In previous grades, students have studied angles by type according to size: acute, obtuse and right, and their role as an 
attribute in polygons.  Now angles are considered based upon the special relationships that exist among them: 
supplementary, complementary, vertical and adjacent angles.  Provide students the opportunities to explore these 
relationships first through measuring and finding the patterns among the angles of intersecting lines or within polygons, 
then utilize the relationships to write and solve equations for multi-step problems. 
 
Real-world and mathematical multi-step problems that require finding area, perimeter, volume, surface area of figures 
composed of triangles, quadrilaterals, polygons, cubes and right prisms should reflect situations relevant to seventh 
graders.  The computations should make use of formulas and involve whole numbers, fractions, decimals, ratios and 
various units of measure with same system conversions. 
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Resources/Tools: 
Illustrative Mathematics Grade 7 tasks: Scroll to the appropriate section to find named tasks. 

• 7.G.B 
o The Circumference of a Circle and the Area of the Region it Encloses 
o Drinking the Lake 

• 7.G.B.4 
o Eight Circles 
o Measuring the area of a circle 
o Designs 
o Stained Glass 

 
NCTM Illuminations – NCTM has many great resources available to educators, some of these resources (i.e. interactives) 
are open to any educator while others (i.e. lessons) require an individual or institutional membership. If you find that a 
resource referenced in the flip books requires membership access, check with your school/district to see if they have an 
institutional membership which would grant you access all NCTM documents. If they do not have a membership, this 
would be a valuable resource to request. 

• “The Ratio of Circumference to Diameter’ 
• “Geometry of Circles” 
• “Discovering the Area Formula for Circles” 
• “The Giant Cookie Dilemma” 
• “Tetrahedral Kites” 
• Popcorn, Anyone? 
• Area Contractor 
• “Measuring the Area of a Circle” 

 
Common Misconceptions: 
Students may believe that Pi is an exact number rather than understanding that 3.14 is just an approximation of pi. 
Many students are confused when dealing with circumference (linear measurement) and area.  
 
This confusion is about an attribute that is measured using linear units (surrounding) vs. an attribute that is measured 
using area units (covering). 
  

https://tasks.illustrativemathematics.org/7
https://linkprotect.cudasvc.com/url?a=https%3a%2f%2filluminations.nctm.org%2fDefault.aspx&c=E,1,HrFPOORirgO4sdp3Hmx1SqW4Z6rTQSFu-hvDPq_-7vipRZjE5yZvUxWDA2MiK-9XvK95iiIewk8XUxNAUu_8lI8MRZ6WEh7dhiit-N6ptg,,&typo=1
http://illuminations.nctm.org/Lesson.aspx?id=1849
http://illuminations.nctm.org/Lesson.aspx?id=2160
http://illuminations.nctm.org/Lesson.aspx?id=1852
http://illuminations.nctm.org/Lesson.aspx?id=2816
http://illuminations.nctm.org/Lesson.aspx?id=2121
http://illuminations.nctm.org/Lesson.aspx?id=2927
http://illuminations.nctm.org/Lesson.aspx?id=2769
http://www.illustrativemathematics.org/illustrations/765
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Domain: Geometry (G) 
 Cluster:  Solve real-life and mathematical problems involving area, surface area, and volume. 
 
Standard:  Grade 7.G.5   

Investigate the relationship between three-dimensional geometric shapes;  
a. Generalize the volume formula for prisms and cylinders (𝑉𝑉 = 𝐵𝐵ℎ where B is the base and h is the height).  (2017) 
b. Generalize the surface area formula for prisms and cylinders (𝑆𝑆𝐴𝐴 = 2𝐵𝐵 + 𝑃𝑃ℎ where B is the area of the base, P is 

the perimeter of the base, and h is the height (in the case of a cylinder, perimeter is replaced by circumference)). 
(2017) 

 
Suggested Standards for Mathematical Practice (MP): 
 MP.1 Make sense of problems and persevere in solving them. 
 MP.2 Reason abstractly and quantitatively. 
 MP.3 Construct viable arguments and critique the reasoning of others. 
 MP.4 Model with mathematics. 
 MP.5 Use appropriate tools strategically. 
 MP.6 Attend to precision. 
 MP.7 Look for and make use of structure. 
 MP.8 Look for and express regularity in repeated reasoning. 

 
Connections:  See 7.G.4 and 5.MD.5, 6.G.4 
 
Explanations and Examples:   
This standard is an excellent opportunity to highlight math practices as students observe the general rule appearing in 
each shape, use that pattern to develop the general rule, and then justify that the generality will apply to any shaped 
prism. Even though the standard only requires prisms and cylinders, illustrating the principals with non-standard shapes 
might help solidify the learning.  
 
In fifth grade, students find volume by packing a solid figure with unit cubes and compare the results to the product of 
length by width by height. Students also learned to apply the formulas 𝑉𝑉 = 𝑝𝑝 ∙ 𝑤𝑤 ∙ ℎ and 𝑉𝑉 = 𝐵𝐵 ∙ ℎ. This standard reviews 
and focuses on the reasoning behind the formula, highlighting the relationship between two-dimensional shapes and 
the three dimensional solid.  
 
Similarly, the second part of this standard furthers the connection between two-dimensional shapes and three-
dimensional solids through using nets to explore surface area.  Students began this exploration in 6th grade but now the 
focus is on generalizing the formula to a variety of three-dimensional shapes. This standard provides an opportunity to 
While teaching this standard, it might be beneficial to explicitly explain that area is additive. Shapes can be decomposed 
and recomposed into different arrangements but the area remains the same. This understanding is necessary for 
students to generalize the surface area formula from specific nets to 2𝐵𝐵 + 𝑃𝑃ℎ. 
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Examples: 

 
 

 Base: label the 
dimensions of the 
base. 

Face: label the 
dimensions of the drawn 
face(s) 

Volume: Calculate the 
volume 

Surface Area: 
Calculate the surface 
area 
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Instructional Strategies:  
Clarity of vocabulary will help students identify shapes for which these general formulas apply.  
 
A prism is: 

• A three-dimensional shape 
• With two bases 

o Bases are congruent 
o Bases are parallel  

• And faces that are parallelograms  
o Faces are formed by connecting corresponding vertices of the bases 

 
Exploring a variety of prisms with different bases but congruent areas and heights will help students see how “stacking 
bases” creates the general formula 𝑉𝑉 = 𝐵𝐵 ⋅ ℎ. Cardboard, folders, or card stock cut into shapes and stacked could be 
used to develop this understanding with students.  
 

 
 
When exploring surface area, student struggle to see why the perimeter of the base times the height is equivalent to the 
area of the faces. It is helpful for students to physically build the prism from a net. Use a marker to trace the perimeter 
of the base and one lateral edge after the shape is built. Then, once the shape is flattened again, students can more 
clearly see the connection between the three-dimensional shape and its two-dimensional net.  
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Resources/Tools: 
MAP formative assessments: 

• Designing 3D Products: Candy Cartons 
• Using Space Efficiently: Packing a Truck 
• Designing a 3D Product in 2D: A Sports Bag 
• Estimating Volume: The Money Munchers 

 
Illustrative Mathematics Grade 6 tasks: Scroll to the appropriate section to find named tasks. 

• 6.G.A.2 
o Computing Volume Progression 1 
o Computing Volume Progression 2 
o Computing Volume Progression 3 
o Banana Bread 
o Volumes with Fractional Edge Lengths 

• 6.G.A.4 
o Nets for Pyramids and Prisms 

Illustrative Mathematics Grade 7 tasks: Scroll to the appropriate section to find named tasks. 
• 7.G.B.6 

o Sand Under the Swing Set 

Open Up resources:  
• Area and Surface Area 
• Angles, Triangles, and Prisms 

NCTM Illuminations – NCTM has many great resources available to educators, some of these resources (i.e. interactives) 
are open to any educator while others (i.e. lessons) require an individual or institutional membership. If you find that a 
resource referenced in the flip books requires membership access, check with your school/district to see if they have an 
institutional membership which would grant you access all NCTM documents. If they do not have a membership, this 
would be a valuable resource to request. 

• Fill 'Er Up 
• Popcorn, Anyone? 
• Fishing for the Best Prism 
• Cubed Cans 

  

http://map.mathshell.org/index.php
http://map.mathshell.org/lessons.php?unit=6300&collection=8&redir=1
http://map.mathshell.org/lessons.php?unit=6310&collection=8&redir=1
http://map.mathshell.org/lessons.php?unit=7305&collection=8
http://map.mathshell.org/lessons.php?unit=7315&collection=8
https://tasks.illustrativemathematics.org/6
https://tasks.illustrativemathematics.org/7
https://www.illustrativemathematics.org/content-standards/7/G/B/6/tasks/266
http://openupresources.org/
https://im.openupresources.org/6/teachers/1.html
https://im.openupresources.org/7/teachers/7.html
https://linkprotect.cudasvc.com/url?a=https%3a%2f%2filluminations.nctm.org%2fDefault.aspx&c=E,1,HrFPOORirgO4sdp3Hmx1SqW4Z6rTQSFu-hvDPq_-7vipRZjE5yZvUxWDA2MiK-9XvK95iiIewk8XUxNAUu_8lI8MRZ6WEh7dhiit-N6ptg,,&typo=1
https://illuminations.nctm.org/Lesson.aspx?id=3085
https://illuminations.nctm.org/Lesson.aspx?id=2927
https://illuminations.nctm.org/Search.aspx?view=search&kw=volume&gr=6-8
https://illuminations.nctm.org/Search.aspx?view=search&kw=volume&gr=6-8&page=2
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Domain: Geometry (G) 
 Cluster:  Solve real-life and mathematical problems involving angle measure, area, surface area, and 
volume. 
 
Standard:  Grade 7.G.6  
Solve real-world and mathematical problems involving area of two-dimensional objects and volume and surface area of 
three-dimensional objects including cylinders and right prisms.  (Solutions should not require students to take square 
roots or cube roots. For example, given the volume of a cylinder and the area of the base, students would identify the 
height.)  (7.G.6) 
 
Suggested Standards for Mathematical Practice (MP): 
 MP.1 Make sense of problems and persevere in solving them. 
 MP.2 Reason abstractly and quantitatively. 
 MP.3 Construct viable arguments and critique the reasoning of others. 
 MP.4 Model with mathematics. 
 MP.5 Use appropriate tools strategically. 
 MP.6 Attend to precision. 
 MP.7 Look for and make use of structure. 
 MP.8 Look for and express regularity in repeated reasoning. 

 
Connections:  See 7.G.4 
 
Explanations and Examples:   
Students continue work from 5th and 6th grade to work with area, volume and surface area of two- dimensional and 
three-dimensional objects (composite shapes).  
 
“Know the formula” does not mean memorization of the formula. To “know” means to have an understanding of why 
the formula works and how the formula relates to the measure (area and volume) and the figure.  
 
Building on work with nets in the 6th grade, students should recognize that finding the area of each face of a three-
dimensional figure and adding the areas will give the surface area.  
 
Students understanding of volume can be supported by focusing on the area of base times the height to calculate 
volume.  Students understanding of surface area can be supported by focusing on the sum of the area of the faces.  Nets 
can be used to evaluate surface area calculations. 
  



69 

 Major Clusters  Supporting Clusters  Additional Clusters 

Examples: 
Choose one of the figures shown below and write a step by step procedure for determining the area. Find another 
person that chose the same figure as you did.  How are your procedures the same and different?  Do they yield the same 
result? 
 
 
 
 
 
 
A cereal box is a rectangular prism.  What is the volume of the cereal box?  What is the surface area of the cereal box? 
(Hint: Create a net of the cereal box and use the net to calculate the surface area.)  
 
Find the area of a triangle with a base length of three units and a height of four units. 
 
Find the area of the trapezoid shown below using the formulas for rectangles and triangles. 
 
 
 
 
 
 
Look at the triangular prism below.  Each triangular face of the prism has a base of 3 centimeters (cm) and a height of 4 
cm.  The length of the prism is 12 cm. 
 
 
 
 
 
 
 
 
 
 
What is the volume of this triangular prism? 
 
Using the rectangular prism shown below, create a new prism with a surface area of between 44 square inches and 54 
square inches. 
 
 
 
 
 
Solution:  Four prisms should be stacked vertically. 

 

12 

7 

3 
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James wanted to plant pansies in his new planter. He wondered how much potting soil he should buy to fill it.  Use the 
measurements in the diagram below to determine the planter’s volume.  
 

 
 

A cylindrical tank has a height of 10 feet and a radius of 4 feet. Jane fills the tank with water at a rate of 8 cubic feet per 
minute.  At this rate, how many minutes will it take Jane to completely fill the tank without overflowing it?  Round your 
answer to the nearest minute. 
 
Solution:  63 minutes 
 
Juan needs a right cylindrical storage tank that holds between 110 and 115 cubic feet of water.  Using whole numbers 
only, provide the radius and height for 3 different tanks that hold between 110 and 115 cubic feet of water. 
 

Tank #1  Tank #2  Tank #3 
radius ft. radius ft. radius ft. 
height ft. height ft. height ft. 

 
Sample Response: 

Tank #1 
 

Tank #2 
 

Tank #3 
radius 2 ft. radius 3 ft. radius 6 ft. 
height 9 ft. height 4 ft. height   1 ft. 

 
This right cylinder has a radius of 3 inches and a height of 4 inches. 

 
What is the volume, in cubic inches, of the cylinder? 
 
Solution: 36π cu in. (or any number between 113 and 113.1) 
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Instructional Strategies:  
Real-world and mathematical multi-step problems that require finding area, perimeter, volume, surface area of figures 
composed of triangles, quadrilaterals, polygons, cubes and right prisms should reflect situations relevant to seventh 
graders.  The computations should make use of formulas and involve whole numbers, fractions, decimals, ratios and 
various units of measure with same system conversions.  
 
Tools/Resources: 
Illustrative Mathematics Grade 7 tasks: Scroll to the appropriate section to find named tasks. 

• 7.G.B.6 
o Sand Under the Swing Set 

 
NCTM Illuminations – NCTM has many great resources available to educators, some of these resources (i.e. interactives) 
are open to any educator while others (i.e. lessons) require an individual or institutional membership. If you find that a 
resource referenced in the flip books requires membership access, check with your school/district to see if they have an 
institutional membership which would grant you access all NCTM documents. If they do not have a membership, this 
would be a valuable resource to request. 

• “Popcorn Anyone?” 
• “Area Contractor” 

 
 
 
  

https://tasks.illustrativemathematics.org/7
https://linkprotect.cudasvc.com/url?a=https%3a%2f%2filluminations.nctm.org%2fDefault.aspx&c=E,1,HrFPOORirgO4sdp3Hmx1SqW4Z6rTQSFu-hvDPq_-7vipRZjE5yZvUxWDA2MiK-9XvK95iiIewk8XUxNAUu_8lI8MRZ6WEh7dhiit-N6ptg,,&typo=1
http://illuminations.nctm.org/Lesson.aspx?id=2927
http://illuminations.nctm.org/Lesson.aspx?id=2769
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Domain: Statistics and Probability (SP) 
Cluster:  Use random sampling to draw inferences about a population. 
 
Standard:  Grade 7.SP.1 
Use statistics to gain information about a population by examining a sample of the population;  

7.SP.1a. Know that generalizations about a population from a sample are valid only if the sample is 
representative of that population and generate a valid representative sample of a population. (7.SP.1) 

7.SP.1b. Identify if a particular random sample would be representative of a population and justify your 
reasoning. (7.SP.1) 

 
Suggested Standards for Mathematical Practice (MP): 
 MP.1 Make sense of problems and persevere in solving them.    
 MP.2 Reason abstractly and quantitatively.       
 MP.3 Construct viable arguments and critique the reasoning of others.    
 MP.6 Attend to precision.  

 
Connections:   
This cluster is connected to: 

• Grade 7 Critical Area of Focus #4:  Drawing inferences about populations based on samples.   
• Initial understanding of statistics, specifically variability and the measures of center and spread begins in Grade 

6. 
 
Explanations and Examples:   
Students recognize that it is difficult to gather statistics on an entire population. Instead a random sample can be 
representative of the total population and will generate valid results. Students use this information to draw inferences 
from data. A random sample must be used in conjunction with the population to get accuracy.  For example, a random 
sample of elementary students cannot be used to give a survey about the prom. 
 
Examples: 
The school food service wants to increase the number of students who eat hot lunch in the cafeteria.  The student 
council has been asked to conduct a survey of the student body to determine the students’ preferences for hot lunch.  
They have determined two ways to do the survey.  The two methods are listed below.  Identify the type of sampling 
used in each survey option.  Which survey option should the student council use and why? 
 

• Method 1:  Write all of the students’ names on cards and pull them out in a draw to determine who will 
complete the survey. 

• Method 2:  Survey the first 20 students that enter the lunch room. 
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Amanda asked a random sampling of 40 students from her school to identify their birth month.  There are 300 students 
in her school.  Amanda’s data is shown in this table. 

Students Birth Months 

Birth Month Number of Students 
January 3 
February 0 
March 3 
April 10 
May 4 
June 3 
July 4 
August 3 
September 2 
October 2 
November 3 
December 3 

 
Which of these statements is supported by the data? 

• Exactly 25% of the students in Amanda’s school have April as their birth month. 
• There are no students in Amanda’s school that have a February birth month. 
• There are probably more students at Amanda’s school with an April birth month than a July birth month. 
• There are probably more students at Amanda’s school with a July birth month than a June birth month. 

 
Instructional Strategies:   
In Grade 6, students used measures of center and variability to describe data.  Students continue to use this knowledge 
in Grade 7 as they use random samples to make predictions about an entire population and judge the possible 
discrepancies of the predictions.  Providing opportunities for students to use real-life situations from science and social 
studies shows the purpose for using random sampling to make inferences about a population. 
 
Make available to students the tools needed to develop the skills and understandings required to produce a 
representative sample of the general population.  One key element of a representative sample is understanding that a 
random sampling guarantees that each element of the population has an equal opportunity to be selected in the 
sample.   
 
Have students compare the random sample to population, asking questions like “Are all the elements of the entire 
population represented in the sample?” and “Are the elements represented proportionally?”  Students can then 
continue the process of analysis by determining the measures of center and variability to make inferences about the 
general population based on the analysis. 
 
Provide students with random samples from a population, including the statistical measures.   
 
Ask students guiding questions to help them make inferences from the sample. 
Tools/Resources: 
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For detailed information, see Progressions for Common Core State Standards in Mathematics:  6-8 Statistics and 
Probability 
 
Illustrative Mathematics Grade 7 tasks: Scroll to the appropriate section to find named tasks. 

• 7.SP.A 
o Estimating the Mean State Area 
o Election Poll, Variation 2 
o Election Poll, Variation 3 
o Election Poll, Variation 1 

• 7.SP.A.1 
o Mr. Briggs's Class Likes Math 

 
Georgia Department of Education website: 

• “The Eyes Have It” -.  Students analyze data and draw conclusions about the data using box-and-whisker plots.  
Students collect data from experiments on eye blinks. 

• “See Saw Nickels”- Students focus on extending their conceptual understanding of proportional relationships 
and direct variation to include inverse relationships. Students will use manipulatives, completed charts, and 
graphs to further their understanding. 

 
Common Misconceptions:  
Students may believe: 

One random sample is not representative of the entire population and that many samples must be taken in 
order to make an inference that is valid.  By comparing the results of one random sample with the results of 
multiple random samples, students can correct this misconception.  Students’ understanding that the random 
sample must be representative of the population is key to supporting valid inferences. 

 
  

http://commoncoretools.files.wordpress.com/2011/12/ccss_progression_sp_68_2011_12_26_bis.pdf
http://commoncoretools.files.wordpress.com/2011/12/ccss_progression_sp_68_2011_12_26_bis.pdf
https://tasks.illustrativemathematics.org/7
http://gadoe.georgiastandards.org/mathframework.aspx?PageReq=MathEyes
http://gadoe.georgiastandards.org/mathframework.aspx?PageReq=MathNickels
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Domain: Statistics and Probability (SP) 
Cluster:  Use random sampling to draw inferences about a population. 
 
Standard:  Grade 7.SP.2 
Use data from a random sample to draw inferences about a population with an unknown characteristic of interest. 
Generate multiple samples (or simulated samples) of the same size to gauge the variation in estimates or predictions.  
For example, estimate the mean word length in a book by randomly sampling words from the book; predict the winner of 
a school election based on randomly sampled survey data. Gauge how far off the estimate or prediction might be. 
(7.SP.2) 
 
Suggested Standards for Mathematical Practice (MP): 
 MP.1 Make sense of problems and persevere in solving them.   
 MP.2 Reason abstractly and quantitatively  
 MP.3 Construct viable arguments and critique the reasoning of others.   
 MP.5 Use appropriate tools strategically.  
 MP.6 Attend to precision. 
 MP.7 Look for and make use of structure. 

 
Connections:  See 7.SP.1    
 
Explanations and Examples:  
Students collect and use multiple samples of data to answer question(s) about a population. Issues of variation in the 
samples should be addressed. 
 
Example: 
Below is the data collected from two random samples of 100 students regarding student’s school lunch preferences.  
Make at least two inferences based on the results. 

 
Lunch Preferences 

Student Sample Hamburgers Tacos Pizza Total 
#1 12 14 74 100 
#2 12 11 77 100 
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Instructional Strategies:  
Make available to students the tools needed to develop the skills and understandings required to produce a 
representative sample of the general population.  One key element of a representative sample is understanding that a 
random sampling guarantees that each element of the population has an equal opportunity to be selected in the 
sample.   
 
Have students compare the random sample to population, asking questions like “Are all the elements of the entire 
population represented in the sample?” and “Are the elements represented proportionally?”  Students can then 
continue the process of analysis by determining the measures of center and variability to make inferences about the 
general population based on the analysis.  Provide students with random samples from a population, including the 
statistical measures.  Ask students guiding questions to help them make inferences from the sample. 
 
Resources/Tools: 
Illustrative Mathematics Grade 7 tasks: Scroll to the appropriate section to find named tasks. 

• 7.SP.A.2 
o Valentine Marbles 

 
Common Misconceptions:  See 7.SP.1    
 
  

https://tasks.illustrativemathematics.org/7


77 

 Major Clusters  Supporting Clusters  Additional Clusters 

Domain: Statistics and Probability (SP) 
 Cluster:  Draw informal comparative inferences about two populations. 
 
Standard:  Grade 7.SP.3 
Informally assess the degree of visual overlap of two numerical data distributions with similar variabilities, measuring 
the difference between the centers by expressing it as a multiple of a measure of variability (requires introduction of 
mean absolute deviation). For example, the mean height of players on the basketball team is 10 cm greater than the 
mean height of players on the soccer team, about twice the variability (mean absolute deviation) on either team; on a 
dot plot, the separation between the two distributions of heights is noticeable. (7.SP.3) 
 
Suggested Standards for Mathematical Practice (MP): 
 MP.1 Make sense of problems and persevere in solving them.  
 MP.2 Reason abstractly and quantitatively  
 MP.3 Construct viable arguments and critique the reasoning of others.  
 MP.5 Use appropriate tools strategically.   
 MP.6 Attend to precision. 
 MP.7 Look for and make use of structure. 

 
Connections:   
This Cluster is connected to: 

•  Grade 7 Critical Area of Focus #4:  drawing inferences about populations based on samples.   It expands 
standards 1 and 2 to make inferences between populations.   

• Measures of center and variability are developed in Statistics and Probability Grade 6.   
 
Explanations and Examples:   
This is the students’ first experience with comparing two data sets.   
 
Students understand that: 

1. a full understanding of the data requires consideration of the measures of variability as well as mean or median, 
2. variability is responsible for the overlap of two data sets and that an increase in variability can increase the 

overlap, and 
3. median is paired with the interquartile range and mean is paired with the mean absolute deviation. 

 
Students can readily find data as described in the example on sports team or college websites.  
 
Other sources for data include American Fact Finder (Census Bureau), Fed Stats, Ecology Explorers, USGS, or CIA World 
Facebook.  Researching data sets provides opportunities to connect mathematics to their interests and other academic 
subjects.  Students can utilize statistic functions in graphing calculators or spreadsheets for calculations with larger data 
sets or to check their computations. Students calculate mean absolute deviations in preparation for later work with 
standard deviations. 
 
The Mean Absolute Deviation describes the variability of the data set by determining the absolute value deviation (the 
distance) of each data piece from the mean and then finding the average of these deviations. Both the interquartile 
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range and the Mean Absolute Deviation are represented by a single numerical value. Higher values represent a greater 
variability in the data. 
 
Understanding Mean Absolute Deviation 
The use of mean absolute deviation in 6th grade is mainly exploratory. The intent is to build a deeper understanding of 
variability. Students would understand the mean distance between the pieces of data and the mean of the data set 
expresses the spread of the data set. Students can see that the larger the mean distance, the greater the variability. 
Comparisons can be made between different data sets. 
 
In the previous data set, the names drawn were Carol, Mike, Maria, Luis, Monique, Sierra, John, and Karen.  There were 
3 names with 4 letters each, 3 names with 5 letters each, 1 name with 6 letters and 1 name with 7 letters. This data can 
be represented on a dot plot.  The mean of the data set is 5 

 
 
To find the mean absolute deviation, students examine each of the data points and its difference from the mean.  This 
analysis can be represented on the dot plot itself or in a table.  Each of the names with 4 letters has one fewer letter 
than the mean, each of the names with 5 letters has zero difference in letters as compared to the mean, each of the 
names with 6 letters has one more letter than the mean, and each of the names with 7 letters has two more letters than 
the mean.  The absolute deviations are the absolute value of each difference. 
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Name 
Number of letters 

in 
a name 

Deviation from 
the Mean 

Absolute Deviation 
from the Mean 

John 4 -1 1 
Luis 4 -1 1 
Mike 4 -1 1 
Carol 5 0 0 
Maria 5 0 0 
Karen 5 0 0 
Sierra 6 +1 1 
Monique 7 +2 2 

Total 40 0 6 

 
The mean of the absolute deviations is found by summing the absolute deviations and dividing by the number of data 

points. In this case, the mean absolute deviation would be 6 ÷ 8 or 3
4

  or 0.75.  

 
The mean absolute deviation is a small number, indicating that there is little variability in the data set. 
 
Consider a different data set also containing 8 names. If the names were Sue, Joe, Jim, Amy, Sabrina, Monique, Timothy, 
and Adelita.  Summarize the data set and its variability. How does this compare to the first data set? 
 

The mean of this data set is still 5.       
5

8
40

8
)7773333(
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++++++

 
 

Name 
Number of letters in 

a name 
Deviation from 

the Mean 
Absolute Deviation 

from the Mean 
Sue 3 -2 2 
Joe 3 -2 2 
Jim 3 -2 2 
Amy 3 -2 2 
Sabrina 7 +2 2 
Timothy 7 +2 2 
Adelita 7 +2 2 
Monique 7 +2 2 

Total 40 0 16 

 
The mean deviation of this data set is 16 ÷ 8 or 2.  Although the mean is the same, there is much more variability in this 
data set. 
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Example: 
Jason wanted to compare the mean height of the players on his favorite basketball and soccer teams.  He thinks the 
mean height of the players on the basketball team will be greater but doesn’t know how much greater.  He also wonders 
if the variability of heights of the athletes is related to the sport they play. He thinks that there will be a greater 
variability in the heights of soccer players as compared to basketball players.  He used the rosters and player statistics 
from the team websites to generate the following lists. 
 
Basketball Team – Height of Players in inches for 2010-2011 Season: 

75, 73, 76, 78, 79, 78, 79, 81, 80, 82, 81, 84, 82, 84, 80, 84 
 
Soccer Team – Height of Players in inches for 2010-2011 Season: 

73, 73, 73, 72, 69, 76, 72, 73, 74, 70, 65, 71, 74, 76, 70, 72, 71, 74, 71, 74, 73, 67, 70, 72, 69, 78, 73, 76, 69 
 
To compare the data sets, Jason creates a two dot plots on the same scale.  The shortest player is 65 inches and the 
tallest players are 84 inches. 
 
 
 
 
 
 
 
 
 
 
 
In looking at the distribution of the data, Jason observes that there is some overlap between the two data sets.  Some 
players on both teams have players between 73 and 78 inches tall.   Jason decides to use the mean and mean absolute 
deviation to compare the data sets.  Jason sets up a table for each data set to help him with the calculations. (See next 
page) 
 
The mean height of the basketball players is 79.75 inches as compared to the mean height of the soccer players at 72.07 
inches, a difference of 7.68 inches. 
 
The mean absolute deviation (MAD) is calculated by taking the mean of the absolute deviations for each data point. The 
difference between each data point and the mean is recorded in the second column of the table. Jason used rounded 
values (80 inches for the mean height of basketball players and 72 inches for the mean height of soccer players) to find 
the differences.  The absolute deviation, absolute value of the deviation, is recorded in the third column.  The absolute 
deviations are summed and divided by the number of data points in the set. 
 
The mean absolute deviation is 2.14 inches for the basketball players and 2.53 for the soccer players. These values 
indicate moderate variation in both data sets. There is slightly more variability in the height of the soccer players. The 
difference between the heights of the teams is approximately 3 times the variability of the data sets 
7.68 ÷ 2.53 = 3.04. 
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Soccer Players (n = 29)  Basketball Players (n = 16) 

Height 
(in) 

Deviation 
from Mean 

(in) 

Absolute 
Deviation (in) 

 
Height 

(in) 
Deviation from 

Mean (in) 
Absolute 

Deviation (in) 

65 -7 7  73 -7 7 
67 -5 5  75 -5 5 
69 -3 3  76 -4 4 
69 -3 3  78 -2 2 
69 -3 3  78 -2 2 
70 -2 2  79 -1 1 
70 -2 2  79 -1 1 
70 -2 2  80 0 0 
71 -1 1  80 0 0 
71 -1 1  81 1 1 
71 -1 1  81 1 1 
72 0 0  82 2 2 
72 0 0  82 2 2 
72 0 0  84 4 4 
72 0 0  84 4 4 
73 +1 1  84 4 4 
73 +1 1     
73 +1 1     
73 +1 1     
73 +1 1     
73 +1 1     
74 +2 2     
74 +2 2     
74 +2 2     
74 +2 2     
76 +4 4     
76 +4 4     
76 +4 4     
78 +6 6     

Σ = 2090  Σ = 62  Σ = 1276  Σ = 40 
 Mean = 2090 ÷ 29 =72 inches  Mean = 1276 ÷ 16 =80 inches 
 MAD = 62 ÷ 29 = 2.13 inches   MAD = 40 ÷ 16 = 2.5 inches 
 
Instructional Strategies:  
In Grade 6, students used measures of center and variability to describe sets of data.  In the cluster “Use random 
sampling to draw inferences about a population” of Statistics and Probability in Grade 7, students learn to draw 
inferences about one population from a random sampling of that population.  
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Students continue using these skills to draw informal comparative inferences about two populations. Provide 
opportunities for students to deal with small populations, determining measures of center and variability for each 
population. Then have students compare those measures and make inferences.  
 
The use of graphical representations of the same data (Grade 6) provides another method for making comparisons.  
Students begin to develop understanding of the benefits of each method by analyzing data with both methods. 
 
When students study large populations, random sampling is used as a basis for the population inference.  This builds on 
the skill developed in the Grade 7 cluster “Use random sampling to draw inferences about a population” of Statistics and 
Probability.  
 
Measures of center and variability are used to make inferences on each of the general populations.  
 
Then students can make comparisons for the two populations based on those inferences. 
 
This is a great opportunity to have students examine how different inferences can be made based on the same two sets 
of data.  Have students investigate how advertising agencies uses data to persuade customers to use their products.  
Additionally, provide students with two populations and have them use the data to persuade both sides of an argument. 
 
Tools/Resources: 
Georgia Department of Education website: 

• “The Eyes Have It”-.  Students analyze data and draw conclusions about the data using box-and-whisker plots.  
Students collect data from experiments on eye blinks. 

 
Illustrative Mathematics Grade 7 tasks: Scroll to the appropriate section to find named tasks. 

• 7.SP.B.3 
o Offensive Linemen 
o College Athletes 

  

http://gadoe.georgiastandards.org/mathframework.aspx?PageReq=MathEyes
https://tasks.illustrativemathematics.org/7
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Domain: Statistics and Probability (SP) 
Cluster:  Draw informal comparative inferences about two populations. 
 
Standard:  Grade 7.SP.4 
Use measures of center (mean, median and/or mode) and measures of variability (range, interquartile range and/or 
mean absolute deviation) for numerical data from random samples to draw informal comparative inferences about two 
populations. For example, decide whether the words in a chapter of a seventh-grade science book are generally longer 
than the words in a chapter of a fourth-grade science book. (NOTE: Students should not have to calculate mean absolute 
deviation but use it to interpret data). (7.SP.4) 
 
 
Suggested Standards for Mathematical Practice (MP): 
 MP.1 Make sense of problems and persevere in solving them.   
 MP.2 Reason abstractly and quantitatively  
 MP.3 Construct viable arguments and critique the reasoning of others.    
 MP.5 Use appropriate tools strategically.    
 MP.6 Attend to precision. 
 MP.7 Look for and make use of structure.   

 
Connections:   See 7.SP.3 
 
Explanations and Examples:   
Students are expected to compare two sets of data using measures of center and variability. Measures of center include 
mean, median, and mode. The measures of variability include range, mean absolute deviation, and interquartile range. 
 
Examples: 
The two data sets below depict random samples of the housing prices sold in the King River and Toby Ranch areas of 
Arizona.  Based on the prices below, which measure of center will provide the most accurate estimation of housing 
prices in Arizona?   Explain your reasoning. 
 

• King River:   {1.2 million;  242,000;  265,500;  140,000;  281,000;  265,000;  211,000} 
• Toby Ranch:   {5 million;  154,000;  250,000;  250,000;  200,000;  160,000;  190,000} 
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The number of books sold by each student in two classes for a fundraiser is summarized by these box plots. 
 

 
 

 
 
The principal concluded that there was more variability in the number of books sold by Class 1 than Class 2. 
 
Which statement is true about the principal’s conclusion?  Explain your reasoning. 

1. It is valid because the median for Class 1 is greater than the median for Class 2. 
2. It is valid because the range for Class 1 is greater than the range for Class 2. 
3. It is invalid because the minimum value for Class 1 is less than the minimum value for Class 2. 
4. It is invalid because the interquartile range for Class 1 is less than the interquartile range for Class 2. 

 
Sample Response: 

1. Not true - statement assumed the median is a measure of variability 
2. Correct- supports the principal’s statement of more variability as shown by a greater range. 
3. Not true- statement assumed the minimum value is a measure of variability 
4. Not true – statement did not correctly determine interquartile range 

 
Instructional Strategies: See 7.SP.3 
 
Tools/Resources: 
See 7.SP.3 
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Domain: Statistics and Probability (SP) 
Cluster:  Investigate chance processes and develop, use, and evaluate probability models. 
 
Standard:  Grade 7.SP.5    
Express the probability of a chance event is a number between 0 and 1 that expresses the likelihood of the event 
occurring.  (Larger numbers indicate greater likelihood.  A probability near 0 indicates an unlikely event, a probability 

around 1
2
 indicates an event that is neither unlikely nor likely, and a probability near 1 indicates a likely event.) (7.SP.5) 

 
Suggested Standards for Mathematical Practice (MP): 
 MP.4 Model with mathematics. 
 MP.5 Use appropriate tools strategically. 
 MP.6.Attend to precision  
 MP.7 Look for and make use of structure.  

 
Connections:   
This cluster is connected to: 

• This cluster goes beyond the Grade 7 Critical Areas of Focus to address Investigating chance.   
• Ratio and Proportional Relationships in Grade 6 is the development of fractions as ratios and percents as ratios.  

In Grade 7, students write the same number represented as a fraction, decimal or percent. 
• Random sampling and simulation are closely connected in Grade 7.SP.  Random sampling and simulation is used 

to determine the experimental probability of event occurring in a population or to describe a population. 
 
Explanations and Examples:   
This is students’ first formal introduction to probability.  Students recognize that all probabilities are between 0 and 1, 
inclusive, the sum of all possible outcomes is 1.  For example, there are three choices of jellybeans – grape, cherry and 

orange.  If the probability of getting a grape is 3
10

 and the probability of getting cherry is 1
5
, what is the probability of 

getting oranges?  The probability of any single event can be recognized as a fraction.  The closer the fraction is to 1, the 
greater the probability the event will occur. Larger numbers indicate greater likelihood.  For example, if you have 10 
oranges and 3 apples, you have a greater likelihood of getting an orange. 
 
Probability can be expressed in terms such as impossible, unlikely, likely, or certain or as a number between 0 and 1 as 
illustrated on the number line.  
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Students can use simulations such as Marble Mania or the Random Drawing Tool on NCTM’s Illuminations to generate 
data and examine patterns. 
 
ScienceNetLinks website : 

• Marble Mania  
 
NCTM Illuminations – NCTM has many great resources available to educators, some of these resources (i.e. interactives) 
are open to any educator while others (i.e. lessons) require an individual or institutional membership. If you find that a 
resource referenced in the flip books requires membership access, check with your school/district to see if they have an 
institutional membership which would grant you access all NCTM documents. If they do not have a membership, this 
would be a valuable resource to request. 

• Random Drawing Tool 
 
Examples: 
A container contains 2 gray, 1 white, and 4 black marbles.  Without looking, if you choose a marble from the container, 
will the probability be closer to 0 or to 1 that you will select a white marble?  A gray marble?  A black marble?  Justify 
each of your predictions. 

 
Carl and Beneta are playing a game using this spinner. 
 

 
Carl will win the game on his next spin if the arrow lands on a section labeled 6, 7, or 8.  Carl claims it is likely, but not 
certain, that he will win the game on his next spin. 
 
Explain why Carl’s claim is not correct. 
 
Beneta will win the game on her next spin if the result of the spin satisfies event X.  Beneta claims it is likely, but not 
certain, that she will win the game on her next spin. 
 
Describe an event X for which Beneta’s claim is correct. 
 
Sample Response: 
Carl’s claim is incorrect.  The probability that Carl will spin a 6 or higher is 0.375.  This means that it is more likely that 
Carl will spin a number less than 6 on his next turn. 
 
For Beneta, event X could be “the arrow lands on a section labeled with a number greater than 2.” 

http://sciencenetlinks.com/
http://www.sciencenetlinks.com/interactives/marble/marblemania.html
https://linkprotect.cudasvc.com/url?a=https%3a%2f%2filluminations.nctm.org%2fDefault.aspx&c=E,1,HrFPOORirgO4sdp3Hmx1SqW4Z6rTQSFu-hvDPq_-7vipRZjE5yZvUxWDA2MiK-9XvK95iiIewk8XUxNAUu_8lI8MRZ6WEh7dhiit-N6ptg,,&typo=1
http://illuminations.nctm.org/activitydetail.aspx?id=67
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Instructional Strategies:  
Grade 7 is the introduction to the formal study of probability.  Through multiple experiences, students begin to 
understand the probability of chance (simple and compound), develop and use sample spaces, compare experimental 
and theoretical probabilities, develop and use graphical organizers, and use information from simulations for 
predictions.  
 

Help students understand the probability of chance is using the benchmarks of probability: 0, 1 and 1
2
. Provide students 

with situations that have clearly defined probability of never happening as zero, always happening as 1 or equally likely 

to happen as to not happen as 1
2
.   

 
Then advance to situations in which the probability is somewhere between any two of these benchmark values. This 
builds to the concept of expressing the probability as a number between 0 and 1.  Use this to build the understanding 
that the closer the probability is to 0, the more likely it will not happen, and the closer to 1, the more likely it will 
happen.   
 
Students learn to make predictions about the relative frequency of an event by using simulations to collect, record, 
organize and analyze data. Students also develop the understanding that the more the simulation for an event is 
repeated, the closer the experimental probability approaches the theoretical probability. 
 
Have students develop probability models to be used to find the probability of events.  Provide students with models of 
equal outcomes and models of not equal outcomes are developed to be used in determining the probabilities of events. 
 
Students should begin to expand the knowledge and understanding of the probability of simple events, to find the 
probabilities of compound events by creating organized lists, tables and tree diagrams.  This helps students create a 
visual representation of the data; i.e., a sample space of the compound event.  From each sample space, students 
determine the probability or fraction of each possible outcome.  
 
Students continue to build on the use of simulations for simple probabilities and now expand the simulation of 
compound probability.  Providing opportunities for students to match situations and sample spaces assists students in 
visualizing the sample spaces for situations. 
 
Students often struggle making organized lists or trees for a situation in order to determine the theoretical probability.  
Having students start with simpler situations that have fewer elements enables them to have successful experiences 
with organizing lists and trees diagrams.  Ask guiding questions to help students create methods for creating organized 
lists and trees for situations with more elements. 
 
Students often see skills of creating organized lists, tree diagrams, etc. as the end product.  Provide students with 
experiences that require the use of these graphic organizers to determine the theoretical probabilities.  Have them 
practice making the connections between the process of creating lists, tree diagrams, etc. and the interpretation of 
those models. 
 
Additionally, students often struggle when converting forms of probability from fractions to percents and vice versa.  To 
help students with the discussion of probability, don’t allow the symbol manipulation/conversions to detract from the 
conversations.  By having students use technology such as a graphing calculator or computer software to simulate a 
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situation and graph the results, the focus is on the interpretation of the data.  Students then make predictions about the 
general population based on these probabilities 
 
 
Common Misconceptions: 
Students may attempt to give probability as a number greater than one rather than representing it as a number 
between zero and one.  For example, if there are 2 blue marbles and 3 red marbles, the probability of picking a blue 

marble is 2
5
, not 2. 

 
Students often expect the theoretical and experimental probabilities of the same data to match.  
 
By providing multiple opportunities for students to experience simulations of situations in order to find and compare the 
experimental probability to the theoretical probability, students discover that rarely are those probabilities the same. 
Students often expect that simulations will result in all of the possibilities. All possibilities may occur in a simulation, but 
not necessarily.  Theoretical probability does use all possibilities.  
 
Note examples in simulations when some possibilities are not shown. 
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Domain: Statistics and Probability (SP) 
Cluster:  Investigate chance processes and develop, use, and evaluate probability models. 
 
Standard:  Grade 7.SP.6 
Collect data from a chance process (probability experiment).  Approximate the probability by observing its long-run 
relative frequency. Recognize that as the number of trials increase, the experimental probability approaches the 
theoretical probability.  Conversely, predict the approximate relative frequency given the probability. For example, when 
rolling a number cube 600 times, predict that a 3 or 6 would be rolled roughly 200 times, but probably not exactly 200 
times. (7.SP.6) 
 
Suggested Standards for Mathematical Practice (MP): 
 MP.1 Make sense of problems and persevere in solving them. 
 MP.2 Reason abstractly and quantitatively.   
 MP.3 Construct viable arguments and critique the reasoning of others. 
 MP.4 Model with mathematics  
 MP.5 Use appropriate tools strategically. 

 
Connections:   See 7.SP.5 
 
Explanations and Examples:   
Students collect data from a probability experiment, recognizing that as the number of trials increase, the experimental 
probability approaches the theoretical probability.  The focus of this standard is relative frequency -- The relative 
frequency is the observed number of successful events for a finite sample of trials. Relative frequency is the observed 
proportion of successful events. 
 
Students can collect data using physical objects or graphing calculator or web-based simulations.  Students can perform 
experiments multiple times, pool data with other groups, or increase the number of trials in a simulation to look at the 
long-run relative frequencies. 
 
Examples: 
Each group receives a bag that contains 4 green marbles, 6 red marbles, and 10 blue marbles.  Each group performs 50 
pulls, recording the color of marble drawn and replacing the marble into the bag before the next draw.  Students 
compile their data as a group and then as a class.  They summarize their data as experimental probabilities and make 
conjectures about theoretical probabilities  
 
How many green draws would you expect if you were to conduct 1000 pulls? 10,000 pulls? 
 
Students create another scenario with a different ratio of marbles in the bag and make a conjecture about the outcome 
of 50 marble pulls with replacement.  An example would be 3 green marbles, 6 blue marbles, and 3 blue marbles. 
 
Students try the experiment and compare their predictions to the experimental outcomes to continue to explore and 
refine conjectures about theoretical probability. 
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Instructional Strategies:  See 7.SP.5 
Students learn to make predictions about the relative frequency of an event by using simulations to collect, record, 
organize and analyze data. Students also develop the understanding that the more the simulation for an event is 
repeated, the closer the experimental probability approaches the theoretical probability. 
 
Have students develop probability models to be used to find the probability of events.  Provide students with models of 
equal outcomes and models of not equal outcomes are developed to be used in determining the probabilities of events.  
 
Tools /Resources: 
Illustrative Mathematics Grade 7 tasks: Scroll to the appropriate section to find named tasks. 

• 7.SP.C.6 
o Rolling Dice 
o Tossing Cylinders 
o Heads or Tails 

 
“Odd and Even”, Great Tasks for Mathematics Grades 6-12, NCSM, (2013).  Students explore experimental probabilities 
and calculate theoretical probabilities of odd and even sums of random numbers. 
 
Common Misconceptions: 
Students may have trouble understanding the difference between the probability that should happen in theory and the 
outcomes of an actual event.  Students often expect the theoretical and experimental probabilities of the same data to 
match. By providing multiple opportunities for students to experience simulations of situations in order to find and 
compare the experimental probability to the theoretical probability, students discover that rarely are those probabilities 
the same. 
 
Students may confuse finding the probability of event A or event B occurring (either one could occur) vs. the probability 
of even A and even B both occurring (compound even). 
 
  

https://tasks.illustrativemathematics.org/7
http://www.mathedleadership.org/docs/ccss/NCSM_GreatTasks_Odd_or_Even_sample.pdf
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Domain: Statistics and Probability (SP) 
Cluster:  Investigate chance processes and develop, use, and evaluate probability models. 
 
Standard:  Grade 7.SP.7 
Develop a probability model and use it to find probabilities of events. Compare probabilities from a model to observed 
frequencies; if the agreement is not good, explain possible sources of the discrepancy.  

7.SP.7a. Develop a uniform probability model by assigning equal probability to all outcomes, and use the model 
to determine probabilities of events. For example, if a student is selected at random from a class, find 
the probability that Jane will be selected and the probability that a girl will be selected. (7.SP.7a) 

7.SP.7b. Develop a probability model (which may not be uniform) by observing frequencies in data generated 
from a chance process. For example, find the approximate probability that a spinning penny will land 
heads up or that a tossed paper cup will land open-end down. Do the outcomes for the spinning penny 
appear to be equally likely based on the observed frequencies? (7.SP.7b) 

 
Suggested Standards for Mathematical Practice (MP): 
 MP.1 Make sense of problems and persevere in solving them.       
 MP.2 Reason abstractly and quantitatively.     
 MP.3 Construct viable arguments and critique the reasoning of others.   
 MP.4 Model with mathematics    
 MP.5 Use appropriate tools strategically.  
 MP.6 Attend to precision. 
 MP.7 Look for and make use of structure.  
 MP.8 Look for and express regularity in repeated reasoning 

 
Connections:   See 7.SP.5 
 
Explanations and Examples: 
Probabilities are useful for predicting what will happen over the long run.  Using theoretical probability, students predict 
frequencies of outcomes.  Students recognize an appropriate design to conduct an experiment with simple probability 
events, understanding that the experimental data give realistic estimates of the probability of an event but are affected 
by sample size. 
 
Students need multiple opportunities to perform probability experiments and compare these results to theoretical 
probabilities.  Critical components of the experiment process are making predictions about the outcomes by applying 
the principles of theoretical probability, comparing the predictions to the outcomes of the experiments, and replicating 
the experiment to compare results. Experiments can be replicated by the same group or by compiling class data.  
 
Experiments can be conducted using various random generation devices including, but not limited to, bag pulls, 
spinners, number cubes, coin toss, and colored chips. Students can collect data using physical objects or graphing 
calculator or web- based simulations. Students can also develop models for geometric probability (i.e. a target).  
 
  



92 

 Major Clusters  Supporting Clusters  Additional Clusters 

Example: 
If you choose a point in the square, what is the probability that it is not in the circle? 
 

 
 
Instructional Strategies: See 7.SP.5 
Have students develop probability models to be used to find the probability of events.  Provide students with models of 
equal outcomes and models of not equal outcomes are developed to be used in determining the probabilities of events. 
 
Resources/Tools: 
Illustrative Mathematics Grade 7 tasks: Scroll to the appropriate section to find named tasks. 

• 7.SP.C.7.a 
o How Many Buttons? 

 
Georgia Department of Education website: 

• Is it Fair?”-Students play the game “Is It Fair?” and record their information using probability to determine 
whether they feel the game is fair or not. Predictions are made before the game begins. Based on their trials, 
students determine all outcomes, create tree diagrams and determine the theoretical chance of winning for 
each player. 

 
Common Misconceptions: 
Students often expect the theoretical and experimental probabilities of the same data to match.  
 
By providing multiple opportunities for students to experience simulations of situations in order to find and compare the 
experimental probability to the theoretical probability, students discover that rarely are those probabilities the same. 
 
Students often expect that simulations will result in all of the possibilities. All possibilities may occur in a simulation, but 
not necessarily.  Theoretical probability does use all possibilities.  
 
Note examples in simulations when some possibilities are not shown. 
 
  

https://tasks.illustrativemathematics.org/7
http://gadoe.georgiastandards.org/mathframework.aspx?PageReq=MathFair
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Domain: Statistics and Probability (SP) 
Cluster:  Investigate chance processes and develop, use, and evaluate probability. 
 
Standard:  Grade 7.SP.8    
Find probabilities of compound events using organized lists, tables, tree diagrams, and simulation. 

7.SP.8a. Know that, just as with simple events, the probability of a compound event is the fraction of outcomes 
in the sample space for which the compound event occurs. (7.SP.8a) 

7.SP.8b. Represent sample spaces for compound events using methods such as organized lists, tables and tree 
diagrams. For an event described in everyday language (e.g. “rolling double sixes”), identify the 
outcomes in the sample space which compose the event. (7.SP.8b) 

7.SP.8c. Design and use a simulation to generate frequencies for compound events. For example, use random 
digits as a simulation tool to approximate the answer to the question: If 40% of donors have type A 
blood, what is the probability that it will take at least 4 donors to find one with type A blood? (7.SP.8c) 

 
Suggested Standards for Mathematical Practice (MP): 
 MP.1 Make sense of problems and persevere in solving them.       
 MP.2 Reason abstractly and quantitatively.   
 MP.3 Construct viable arguments and critique the reasoning of others.    
 MP.4 Model with mathematics   
 MP.5 Use appropriate tools strategically.  
 MP.6 Attend to precision. 
 MP.7 Look for and make use of structure.  
 MP.8 Look for and express regularity in repeated reasoning. 

 
Connections:   See 7.SP.5 
 
Explanations and Examples:   
Students use tree diagrams, frequency tables, and organized lists, and simulations to determine the probability of 
compound events. 
 
Probabilities are useful for predicting what will happen over the long run.  Using theoretical probability, students predict 
frequencies of outcomes.  Students recognize an appropriate design to conduct an experiment with simple probability 
events, understanding that the experimental data give realistic estimates of the probability of an event but are affected 
by sample size. 
 
Examples: 
Students conduct a bag pull experiment. A bag contains 5 marbles. There is one red marble, two blue marbles and two 
purple marbles. Students will draw one marble without replacement and then draw another.  
 
What is the sample space for this situation? Explain how you determined the sample space and how you will use it to 
find the probability of drawing one blue marble followed by another blue marble. 
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Show all possible arrangements of the letters in the word FRED using a tree diagram. 
 
If each of the letters is on a tile and drawn at random, what is the probability that you will draw the letters F-R-E-D in 
that order?   
 
What is the probability that your “word” will have an F as the first letter? 
 

 
 
Instructional Strategies:  
Students should begin to expand the knowledge and understanding of the probability of simple events, to find the 
probabilities of compound events by creating organized lists, tables and tree diagrams.  This helps students create a 
visual representation of the data; i.e., a sample space of the compound event.  From each sample space, students 
determine the probability or fraction of each possible outcome.  
 
Students continue to build on the use of simulations for simple probabilities and now expand the simulation of 
compound probability.  Providing opportunities for students to match situations and sample spaces assists students in 
visualizing the sample spaces for situations. 
 
Students often struggle making organized lists or trees for a situation in order to determine the theoretical probability.  
Having students start with simpler situations that have fewer elements enables them to have successful experiences 
with organizing lists and trees diagrams.  Ask guiding questions to help students create methods for creating organized 
lists and trees for situations with more elements. 
 
Students often see skills of creating organized lists, tree diagrams, etc. as the end product.  Provide students with 
experiences that require the use of these graphic organizers to determine the theoretical probabilities.  Have them 



95 

 Major Clusters  Supporting Clusters  Additional Clusters 

practice making the connections between the process of creating lists, tree diagrams, etc. and the interpretation of 
those models. 
 
Additionally, students often struggle when converting forms of probability from fractions to percents and vice versa.  To 
help students with the discussion of probability, don’t allow the symbol manipulation/conversions to detract from the 
conversations.  By having students use technology such as a graphing calculator or computer software to simulate a 
situation and graph the results, the focus is on the interpretation of the data.  Students then make predictions about the 
general population based on these probabilities. 
 
Resources/Tools: 
Illustrative Mathematics Grade 7 tasks: Scroll to the appropriate section to find named tasks. 

• 7.SP.C.8 
o Waiting Times 
o Rolling Twice 
o Red, Green, or Blue? 

• 7.SP.C.8.a 
o Sitting across from Each Other 
o Tetrahedral Dice 

• 7.SP.C.8.b 
o Sitting across from Each Other 
o Tetrahedral Dice 

 
 
Common Misconceptions: 
Students often expect the theoretical and experimental probabilities of the same data to match.  By providing multiple 
opportunities for students to experience simulations of situations in order to find and compare the experimental 
probability to the theoretical probability, students discover that rarely are those probabilities the same. 
 
Students often expect that simulations will result in all of the possibilities. All possibilities may occur in a simulation, but 
not necessarily.  Theoretical probability does use all possibilities.  
 
Note examples in simulations when some possibilities are not shown. 

https://tasks.illustrativemathematics.org/7


96 

 

Shading taken from OA progression 
 Result Unknown Change Unknown Start Unknown 

Add to 

Two bunnies sat on the grass. 
Three more bunnies hopped 
there. How many bunnies are 
on the grass now? 
2 + 3 = ? 

Two bunnies were sitting on 
the grass. Some more bunnies 
hopped there. Then there were 
five bunnies. How many 
bunnies hopped over to the 
first two? 
2 + ? = 5 

Some bunnies were sitting on the 
grass. Three more bunnies 
hopped there. Then there were 
five bunnies. How many bunnies 
were on the grass before? 
? + 3 = 5 

Taken from 

Five apples were on the 
table. I ate two apples. How 
many apples are on the table 
now? 
5 – 2 = ? 

Five apples were on the 
table. I ate some apples. 
Then there were three apples. 
How many apples did 
I eat? 
5 – ? = 3 

Some apples were on the 
table. I ate two apples. Then there 
were three apples. How many 
apples were on the table before? 
? – 2 = 3 

  

Put 
Together/ 

Take Apart2 

Total Unknown Addend Unknown Both Addends Unknown1 
Three red apples and two 
green apples are on the table. 
How many apples are on the 
table? 
3 + 2 = ? 

Five apples are on the table.  
Three are red and the rest are 
green. How many apples are 
green? 
3 + ? = 5, 5 – 3 = ? 

Grandma has five flowers. 
How many can she put in her red 
vase and how many in her blue 
vase? 
5 = 0 + 5,  5 = 5 + 0 
5 = 1 + 4,  5 = 4 + 1 
5 = 2 + 3,  5 = 3 + 2 

  

Compare3 

Difference Unknown Bigger Unknown Smaller Unknown 
(“How many more?” version): 
Lucy has two apples. Julie has 
five apples. How many more 
apples does Julie have than 
Lucy? 
 
(“How many fewer?” version): 
Lucy has two apples. Julie has 
five apples. How many fewer 
apples does Lucy have than 
Julie? 
2 + ? = 5, 5 – 2 = ? 

(Version with “more”): 
Julie has three more apples 
than Lucy. Lucy has two apples. 
How many apples does Julie 
have? 
 
(Version with “fewer”): 
Lucy has 3 fewer apples than 
Julie. Lucy has two apples. 
How many apples does Julie 
have? 
2 + 3 = ?, 3 + 2 = ? 

(Version with “more”): 
Julie has three more apples than 
Lucy. Julie has five apples. How 
many apples does Lucy have? 
 
 
(Version with “fewer”): 
Lucy has 3 fewer apples than Julie. 
Julie has five apples. 
How many apples does Lucy 
have? 
5 – 3 = ?, ? + 3 = 5 

Blue shading indicates the four Kindergarten problem subtypes. Students in grades 1 and 2 work with all subtypes and variants (blue 
and green). Yellow indicates problems that are the difficult four problem subtypes or variants that students in Grade 1 work with but 
do not need to master until Grade 2.  
1These take apart situations can be used to show all the decompositions of a given number. The associated equations, which have the total on the left of the equal sign, help children 
understand that the = sign does not always mean makes or results in but always does mean is the same number as. 
2Either addend can be unknown, so there are three variations of these problem situations. Both Addends Unknown is a productive extension of this basic situation, especially for small 
numbers less than or equal to 10. 
3For the Bigger Unknown or Smaller Unknown situations, one version directs the correct operation (the version using more for the bigger unknown and using less for the smaller unknown). 
The other versions are more difficult.  

APPENDIX: TABLE 1. Common Addition and Subtraction Situations 
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Grade level identification of introduction of problem situations taken from OA progression 
 

Unknown Product 
Group Size Unknown 

(“How many in each group?” 
Division) 

Number of Groups 
Unknown 

(“How many groups?”  
Division) 

3 x 6 = ? 3 x ? = 18; 18 ÷ 3 = ? ? x 6 = 18; 18 ÷ 6 = ? 

Equal 
Groups 

There are 3 bags with 6 
plums in each bag. How 
many plums are there in 
all? 
 
Measurement example. 
You need 3 lengths of 
string, each 6 inches long. 
How much string will you 
need altogether? 

If 18 plums are shared 
equally into 3 bags, then 
how many plums will be in 
each bag? 
 
Measurement example. 
You have 18 inches of 
string, which you will cut 
into 3 equal pieces. 
How long will each piece 
of string be? 

If 18 plums are to be 
packed 6 to a bag, then 
how many bags are 
needed? 
 
Measurement example. 
You have 18 inches of 
string, which you will cut 
into pieces that are 6 
inches long. How many 
pieces of string will you 
have? 

Arrays4, 
Area5 

There are 3 rows of apples 
with 6 apples in each row. 
How many apples are 
there? 
 
Area example.  
What is the area of a 3 cm 
by 6 cm rectangle? 

If 18 apples are arranged 
into 3 equal rows, how 
many apples will be in 
each row? 
 
Area example.  
A rectangle has area 18 
square centimeters. If one 
side is 3 cm long, how 
long is a side next to it? 

If 18 apples are arranged 
into equal rows of 6 
apples, how many rows 
will there be? 
 
Area example.  
A rectangle has area 18 
square centimeters. If one 
side is 6 cm long, how 
long is a side next to it? 

Compare 

A blue hat costs $6. A red 
hat costs 3 times as much 
as the blue hat. How much 
does the red hat cost? 
 
Measurement example.  
A rubber band is 6 cm 
long. How long will the 
rubber band be when it is 
stretched to be 3 times as 
long? 

A red hat costs $18 and 
that is 3 times as much as 
a blue hat costs. How 
much does a blue hat 
cost? 
 
Measurement example.  
A rubber band is stretched 
to be 18 cm long and that 
is 3 times as long as it 
was at first. How long was 
the rubber band at first? 

A red hat costs $18 and a 
blue hat costs $6. How 
many times as much does 
the red hat cost as the 
blue hat? 
 
Measurement example.  
A rubber band was 6 cm 
long at first. Now it is 
stretched to be 18 cm 
long. How many times as 
long is the rubber band 
now as it was at first? 

General a × b = ? a × ? = p, and p ÷ a = ? ? × b = p, and p ÷ b = ? 
Multiplicative compare problems appear first in Grade 4 (green), with whole number values and with the “times as much” language 
from the table. In Grade 5, unit fractions language such as “one third as much” may be used. Multiplying and unit language change 

TABLE 2.  Common Multiplication and Division Situations 



98 

 

the subject of the comparing sentence (“A red hat costs n times as much as the blue hat” results in the same comparison as “A blue 
hat is 1/n times as much as the red hat” but has a different subject.) 

 

Name of Property Representation of Property Example of Property, 
Using Real Numbers 

Properties of Addition 

Associative (𝑟𝑟 + 𝑛𝑛) + 𝑝𝑝 = 𝑟𝑟 + (𝑛𝑛 + 𝑝𝑝) (78 + 25) + 75 = 78 + (25 + 75) 

Commutative 𝑟𝑟 + 𝑛𝑛 = 𝑛𝑛 + 𝑟𝑟 2 + 98 = 98 + 2 

Additive Identity 𝑟𝑟 + 0 = 𝑟𝑟  𝑟𝑟𝑝𝑝𝑑𝑑  0 + 𝑟𝑟 = 𝑟𝑟 9875 + 0 = 9875 

Additive Inverse 
For every real number a, there is a 
real number −𝑟𝑟 such that 𝑟𝑟 +
−𝑟𝑟 = −𝑟𝑟 + 𝑟𝑟 = 0 
 

−47 + 47 = 0 

Properties of Multiplication 

Associative (𝑟𝑟 × 𝑛𝑛) × 𝑝𝑝 = 𝑟𝑟 × (𝑛𝑛 × 𝑝𝑝) (32 × 5) × 2 = 32 × (5 × 2) 

Commutative 𝑟𝑟 × 𝑛𝑛 = 𝑛𝑛 × 𝑟𝑟 10 × 38 = 38 × 10 

Multiplicative 
Identity 

𝑟𝑟 × 1 = 𝑟𝑟  𝑟𝑟𝑝𝑝𝑑𝑑  1 × 𝑟𝑟 = 𝑟𝑟 387 × 1 = 387 

Multiplicative 
Inverse 

For every real number a, 𝑟𝑟 ≠ 0, 
there is a real number 1

𝑔𝑔
 such that  

𝑟𝑟 ×
1
𝑟𝑟

=
1
𝑟𝑟

× 𝑟𝑟 = 1 

 

8
3

×
3
8

= 1 

Distributive Property of Multiplication over Addition 
Distributive 

 
𝑟𝑟 × (𝑛𝑛 + 𝑝𝑝) = 𝑟𝑟 × 𝑛𝑛 + 𝑟𝑟 × 𝑝𝑝 7 × (50 + 2) = 7 × 50 + 7 × 2 

(Variables a, b, and c represent real numbers.) 
Excerpt from NCTM’s Developing Essential Understanding of Algebraic Thinking, grades 3-5 p. 16-17 

  

TABLE 3. The Properties of Operations 
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Name of Property Representation of Property Example of property 

Reflexive Property 
of Equality 𝑟𝑟 = 𝑟𝑟 3,245 = 3,245 

Symmetric Property 
of Equality 𝐼𝐼𝑓𝑓 𝑟𝑟 = 𝑛𝑛, 𝑡𝑡ℎ𝑖𝑖𝑝𝑝 𝑛𝑛 = 𝑟𝑟 2 + 98 = 90 + 10, 𝑡𝑡ℎ𝑖𝑖𝑝𝑝 90 + 10 = 2 + 98 

Transitive Property 
of Equality 

 
𝐼𝐼𝑓𝑓 𝑟𝑟 = 𝑛𝑛 𝑟𝑟𝑝𝑝𝑑𝑑 𝑛𝑛 = 𝑝𝑝, 𝑡𝑡ℎ𝑖𝑖𝑝𝑝 𝑟𝑟 = 𝑝𝑝 

𝐼𝐼𝑓𝑓 2 + 98 = 90 + 10 𝑟𝑟𝑝𝑝𝑑𝑑 90 + 10 = 52 + 48 
then 

2 + 98 = 52 + 48 
Addition Property 

of Equality 𝐼𝐼𝑓𝑓 𝑟𝑟 = 𝑛𝑛, 𝑡𝑡ℎ𝑖𝑖𝑝𝑝 𝑟𝑟 + 𝑝𝑝 = 𝑛𝑛 + 𝑝𝑝 𝐼𝐼𝑓𝑓 
1
2

=
2
4

, 𝑡𝑡ℎ𝑖𝑖𝑝𝑝 
1
2

+
3
5

=
2
4

+
3
5

 

Subtraction 
Property of Equality 𝐼𝐼𝑓𝑓 𝑟𝑟 = 𝑛𝑛, 𝑡𝑡ℎ𝑖𝑖𝑝𝑝 𝑟𝑟 − 𝑝𝑝 = 𝑛𝑛 − 𝑝𝑝 𝐼𝐼𝑓𝑓 

1
2

=
2
4

, 𝑡𝑡ℎ𝑖𝑖𝑝𝑝 
1
2
−

1
5

=
2
4
−

1
5

 

Multiplication 
Property of Equality 𝐼𝐼𝑓𝑓 𝑟𝑟 = 𝑛𝑛, 𝑡𝑡ℎ𝑖𝑖𝑝𝑝 𝑟𝑟 × 𝑝𝑝 = 𝑛𝑛 × 𝑝𝑝 𝐼𝐼𝑓𝑓 

1
2

=
2
4

, 𝑡𝑡ℎ𝑖𝑖𝑝𝑝 
1
2

×
1
5

=
2
4

×
1
5

 

Division Property of 
Equality 𝐼𝐼𝑓𝑓 𝑟𝑟 = 𝑛𝑛 𝑟𝑟𝑝𝑝𝑑𝑑 𝑝𝑝 ≠ 0, 𝑡𝑡ℎ𝑖𝑖𝑝𝑝 𝑟𝑟 ÷ 𝑝𝑝 = 𝑛𝑛 ÷ 𝑝𝑝 𝐼𝐼𝑓𝑓 

1
2

=
2
4

, 𝑡𝑡ℎ𝑖𝑖𝑝𝑝 
1
2

÷
1
5

=
2
4

÷
1
5

 

Substitution 
Property of Equality 

If 𝑟𝑟 = 𝑛𝑛, then b may be substituted for a 
in any expression containing a. 

𝐼𝐼𝑓𝑓 20 = 10 + 10 
then 

90 + 20 = 90 + (10 + 10) 

(Variables a, b, and c can represent any number in the rational, real, or complex number systems.) 

 

  

TABLE 4. The Properties of Equality 
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Exactly one of the following is true: 𝑟𝑟 < 𝑛𝑛, 𝑟𝑟 = 𝑛𝑛, 𝑟𝑟 > 𝑛𝑛. 

𝐼𝐼𝑓𝑓 𝑟𝑟 > 𝑛𝑛 𝑟𝑟𝑝𝑝𝑑𝑑 𝑛𝑛 > 𝑝𝑝 𝑡𝑡ℎ𝑖𝑖𝑝𝑝 𝑟𝑟 > 𝑝𝑝. 

𝐼𝐼𝑓𝑓 𝑟𝑟 > 𝑛𝑛, 𝑡𝑡ℎ𝑖𝑖𝑝𝑝 𝑛𝑛 < 𝑟𝑟. 

𝐼𝐼𝑓𝑓 𝑟𝑟 > 𝑛𝑛, 𝑡𝑡ℎ𝑖𝑖𝑝𝑝 − 𝑟𝑟 < −𝑛𝑛. 

𝐼𝐼𝑓𝑓 𝑟𝑟 > 𝑛𝑛, 𝑡𝑡ℎ𝑖𝑖𝑝𝑝 𝑟𝑟 ± 𝑝𝑝 > 𝑛𝑛 ± 𝑝𝑝. 

𝐼𝐼𝑓𝑓 𝑟𝑟 > 𝑛𝑛 𝑟𝑟𝑝𝑝𝑑𝑑 𝑝𝑝 > 0, 𝑡𝑡ℎ𝑖𝑖𝑝𝑝 𝑟𝑟 × 𝑝𝑝 > 𝑛𝑛 × 𝑝𝑝. 

𝐼𝐼𝑓𝑓 𝑟𝑟 > 𝑛𝑛 𝑟𝑟𝑝𝑝𝑑𝑑 𝑝𝑝 < 0, 𝑡𝑡ℎ𝑖𝑖𝑝𝑝 𝑟𝑟 × 𝑝𝑝 < 𝑛𝑛 × 𝑝𝑝. 

𝐼𝐼𝑓𝑓 𝑟𝑟 > 𝑛𝑛 𝑟𝑟𝑝𝑝𝑑𝑑 𝑝𝑝 > 0, 𝑡𝑡ℎ𝑖𝑖𝑝𝑝 𝑟𝑟 ÷ 𝑝𝑝 > 𝑛𝑛 ÷ 𝑝𝑝. 

𝐼𝐼𝑓𝑓 𝑟𝑟 > 𝑛𝑛 𝑟𝑟𝑝𝑝𝑑𝑑 𝑝𝑝 < 0, 𝑡𝑡ℎ𝑖𝑖𝑝𝑝 𝑟𝑟 ÷ 𝑝𝑝 < 𝑛𝑛 ÷ 𝑝𝑝. 

Here a, b, and c stand for arbitrary numbers in the rational or real number systems. 

  

TABLE 5. The Properties of Inequality 
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Beginning--A child can count very small collections (1-4) collection of items and understands that the last word tells 
“how many” even.  Beyond on small numbers the number words may be said without the lack of numerical 
understanding. This is often referred to as rote counting. 
 
Level 1—The child uses one to one correspondence to find the number of objects in two sets. Even if the quantity is 
known for the first set, the child will start with the first set and continue counting on into the second set. The child 
begins the count with one.  This also connects to Piaget’s Hierarchical Inclusion – that in order to have 7 – you have to 
have 6, 5, 4, etc. 
 
Level 2 – At this level the student begins the counting, starting with the known quantity of the first set and “counts on” 
from that point in the sequence to establish how many.  This method is used to find the total in two sets.  This counting 
is not rote.  This level of counting requires several connections between cardinality and counting meanings of the 
number words

TABLE 6. Development of Counting in K-2 Children 
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Kansas Math Standards require high-level cognitive demand asking students to demonstrate deeper conceptual understanding through the application of 
content knowledge and skills to new situations and sustained tasks.  For each Assessment Target the depth(s) of knowledge (DOK) that the student needs to 
bring to the item/task will be identified, using the Cognitive Rigor Matrix shown below. 
 Depth of Thinking 

(Webb)+ Type of Thinking 
(Revised Bloom) 

DOK Level 1 

Recall & Reproduction 

DOK Level 2 

Basic Skills & Concepts 
DOK Level 3 

Strategic Thinking & Reasoning 
DOK Level 4 

Extended Thinking 

Remember • Recall conversions, terms, facts    

Understand 

• Evaluate an expression 
• Locate points on a grid or number on number line 
• Solve a one-step problem 
• Represent math relationships in words, pictures, or 

symbols 

• Specify, explain relationships 
• Make basic inferences or logical 

predictions from data/observations 
• Use models/diagrams to explain 

concepts 
• Make and explain estimates 

• Use concepts to solve non-
routine problems 

• Use supporting evidence to justify 
conjectures, generalize, or 
connect ideas 

• Explain reasoning when more 
than one response is possible 

• Explain phenomena in terms of 
concepts 

• Relate mathematical concepts to other content 
areas, other domains 

• Develop generalizations of the results obtained 
and the strategies used and apply them to new 
problem situations 

Apply 

• Follow simple procedures 
• Calculate, measure, apply a rule (e.g., rounding) 
• Apply algorithm or formula 
• Solve linear equations 
• Make conversions 

• Select a procedure and perform it 
• Solve routine problem applying 

multiple concepts or decision 
points 

• Retrieve information to solve a 
problem 

• Translate between representations 

• Design investigation for a specific 
purpose or research question 

• Use reasoning, planning, and 
supporting evidence 

• Translate between problem & 
symbolic notation when not a 
direct translation 

• Initiate, design, and conduct a project that 
specifies a problem, identifies solution paths, 
solves the problem, and reports results 

Analyze 
• Retrieve information from a table or graph to answer a 

question 
• Identify a pattern/trend 

• Categorize data, figures 
• Organize, order data 
• Select appropriate graph and 

organize & display data 
• Interpret data from a simple graph 
• Extend a pattern 

• Compare information within or 
across data sets or texts 

• Analyze and draw conclusions 
from data, citing evidence 

• Generalize a pattern 
• Interpret data from complex 

graph 

• Analyze multiple sources of evidence or data sets 

Evaluate   

• Cite evidence and develop a logical 
argument 

• Compare/contrast solution 
methods 

• Verify reasonableness 

• Apply understanding in a novel way, provide 
argument or justification for the new application 

Create 
• Brainstorm ideas, concepts, problems, or perspectives 

related to a topic or concept 

• Generate conjectures or hypotheses 
based on observations or prior 
knowledge and 
experience 

• Develop an alternative solution 
• Synthesize information within 

one data set 

• Synthesize information across multiple sources 
or data sets 

• Design a model to inform and solve a practical or 
abstract situation 

Table 7. Cognitive Rigor Matrix/Depth of Knowledge (DOK) 
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